Wikisage, de vrije encyclopedie van de tweede generatie en digitaal erfgoed, wenst u prettige feestdagen en een gelukkig 2025

Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.

  • Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
  • Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
rel=nofollow

Gelijkzwevende stemming

Uit Wikisage
Naar navigatie springen Naar zoeken springen

De gelijkzwevende stemming of evenredig zwevende temperatuur is, voor instrumenten met vaste stemming, en voor de in het Westen gebruikelijkste stemming in 12 tonen per octaaf, een specifieke keuze voor de afstanden tussen die tonen. Het octaaf met zijn frequentieverhouding van 2 wordt hierbij in 12 precies even grote afstanden verdeeld, of anders gezegd: de verhouding van de frequenties van twee opeenvolgende halve tonen is steeds precies dezelfde (en is dus gelijk aan12, de twaalfdemachtswortel van twee). Behalve voor een octaaf zijn de intervallen dan echter nooit gelijk aan de rein klinkende verhoudingen. Deze laatste zijn verhoudingen van kleine natuurlijke getallen (zoals 3/2 voor een kwint en 5/4 voor een grote terts). Niet rein betekent vals. Dat is dan voor gelijknamige intervallen wel altijd even vals, vandaar de naam evenredig zwevende stemming. Gelukkig is die afwijking voor de kwint – het belangrijkste interval na het octaaf – erg beperkt, althans in een systeem met 12 tonen. Voordeel van deze stemming is, dat ze even (weinig) vals blijft klinken als er op een andere toonsoort wordt overgegaan. Kort samengevat is het een compromisoplossing om in alle twaalf toonsoorten even (weinig) vals te klinken.

Geschiedenis

De eerste van wie bekend is dat hij zich met berekeningen betreffende de gelijkzwevende stemming bezighield en daarover in 1584 schreef, was Chu Tsai-Yu (朱載堉) ten tijde van de Mingdynastie. Vincenzo Galilei (de vader van Galileo Galilei) bepleitte in 1581 al een dergelijke stemming. Ook Simon Stevin hield zich bezig met berekeningen aan intervallen van onder meer de gelijkzwevende stemming, maar het duurde tot het begin van de 20e eeuw voor pianos gebouwd werden met deze stemming.

De reeks composities Das wohltemperierte Klavier van Johann Sebastian Bach is bedoeld voor de welgetempereerde stemming zoals die mogelijk was door het werk van de Duitse organist en muziektheoreticus Andreas Werckmeister. Dit is niet hetzelfde als de nu gebruikelijke gelijkzwevende stemming.

Grootte van intervallen

Doordat de frequentieverhouding van een octaaf 2 is, overeenkomend met 1200 cent, wordt de verhouding van een halve toonafstand gelijk aan 12 of 100 cent. Dit geeft de volgende frequentieverhoudingen voor gelijkzwevende stemming, uitgaande van c als grondtoon, vergeleken met de reine stemming:

toon interval t.o.v.
grondtoon c
  frequentieverhouding
t.o.v. grondtoon c
  aantal cents meer
dan grondtoon c
  afwijking
gelijkzwevend rein gelijkzwevend rein
c prime 2  0 /12 = 1  1 /1 = 1 0 0 0
des kleine secunde 2  1 /12 ≈ 1,059463094  16 /15 ≈ 1,0667 100 112 -0,68%
d grote secunde 2  2 /12 ≈ 1,122462048  9 /8 = 1,125 200 204 -0,23%
es kleine terts 2  3 /12 ≈ 1,189207115  6 /5 = 1,2 300 316 -0,91%
e grote terts 2  4 /12 ≈ 1,25992105  5 /4 = 1,25 400 386 +0,79%
f reine kwart 2  5 /12 ≈ 1,334839854  4 /3 ≈ 1,3333 500 498 +0,11%
fis overmatige kwart 2  6 /12 ≈ 1,414213562  7 /5 = 1,4 600 583 +1,02%
g reine kwint 2  7 /12 ≈ 1,498307077  3 /2 = 1,5 700 702 -0,11%
as kleine sext 2  8 /12 ≈ 1,587401052  8 /5 = 1,6 800 814 -0,79%
a grote sext 2  9 /12 ≈ 1,681792831  5 /3 ≈ 1,6667 900 884 +0,90%
bes kleine septiem 2  10 /12 ≈ 1,781797436  16 /9 ≈ 1,7778 1000 996 +0,23%
b grote septiem 2  11 /12 ≈ 1,887748625  15 /8 = 1,875 1100 1088 +0,68%
c′ octaaf 2  12 /12 = 2  2 /1 = 2 1200 1200 0

Als f0 de frequentie van de grondtoon is, berekent men de frequentie fn van de toon op n halve toonafstanden als;

fn = 2 n /12 f0

Om in de tegenwoordig gebruikelijke stemming een centrale a′ van 440 Hz (deze frequentie heeft verschillende waarden gehad) te krijgen, moet de A in het laagst bruikbare octaaf ("A) dus een frequentie van 27,5 Hz hebben, en de laagste C ("C) daarmee 16,3516 Hz zijn.

Alternatieve gelijkzwevende toonschalen

Soms wordt een octaaf verdeeld in meer dan 12 gelijke delen:

Zie ook

Externe link

rel=nofollow
rel=nofollow