Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Gebruiker:SjorsXY/ Oerknal: verschil tussen versies
Geen bewerkingssamenvatting |
Geen bewerkingssamenvatting |
||
Regel 5: | Regel 5: | ||
Na zijn aanvankelijke expansie, een gebeurtenis die op zichzelf vaak "de oerknal" wordt genoemd, koelde het universum voldoende af om de vorming van subatomaire deeltjes en later atomen mogelijk te maken. Gigantische wolken van deze oerelementen - meestal [[waterstof]], met wat helium en lithium - vloeiden later samen door [[zwaartekracht]] en vormden vroege sterren en sterrenstelsels, waarvan de afstammelingen vandaag de dag zichtbaar zijn. Naast deze oorspronkelijke bouwmaterialen observeren astronomen de zwaartekrachtseffecten van een onbekende donkere materie die sterrenstelsels omringt. Het grootste deel van het zwaartekrachtpotentiaal in het universum lijkt in deze vorm te zijn, en de oerknaltheorie en verschillende waarnemingen geven aan dat dit overmatige zwaartekrachtpotentieel niet wordt gecreëerd door baryonische materie, zoals normale atomen. Metingen van de roodverschuivingen van supernovae geven aan dat de uitdijing van het heelal versnelt, een waarneming die wordt toegeschreven aan het bestaan van donkere energie. | Na zijn aanvankelijke expansie, een gebeurtenis die op zichzelf vaak "de oerknal" wordt genoemd, koelde het universum voldoende af om de vorming van subatomaire deeltjes en later atomen mogelijk te maken. Gigantische wolken van deze oerelementen - meestal [[waterstof]], met wat helium en lithium - vloeiden later samen door [[zwaartekracht]] en vormden vroege sterren en sterrenstelsels, waarvan de afstammelingen vandaag de dag zichtbaar zijn. Naast deze oorspronkelijke bouwmaterialen observeren astronomen de zwaartekrachtseffecten van een onbekende donkere materie die sterrenstelsels omringt. Het grootste deel van het zwaartekrachtpotentiaal in het universum lijkt in deze vorm te zijn, en de oerknaltheorie en verschillende waarnemingen geven aan dat dit overmatige zwaartekrachtpotentieel niet wordt gecreëerd door baryonische materie, zoals normale atomen. Metingen van de roodverschuivingen van supernovae geven aan dat de uitdijing van het heelal versnelt, een waarneming die wordt toegeschreven aan het bestaan van donkere energie. | ||
Georges Lemaître merkte voor het eerst op in 1927 dat een uitdijend heelal terug in de tijd kan worden getraceerd naar een enkel punt dat hij het "oeratoom" noemde. Edwin Hubble bevestigde door analyse van galactische roodverschuivingen in 1929 dat sterrenstelsels inderdaad uit elkaar drijven; dit is belangrijk observationeel bewijs voor een uitdijend heelal. Decennia lang was de wetenschappelijke gemeenschap verdeeld tussen aanhangers van de oerknal en het rivaliserende stationaire model | Georges Lemaître merkte voor het eerst op in 1927 dat een uitdijend heelal terug in de tijd kan worden getraceerd naar een enkel punt dat hij het "oeratoom" noemde. Edwin Hubble bevestigde door analyse van galactische roodverschuivingen in 1929 dat sterrenstelsels inderdaad uit elkaar drijven; dit is belangrijk observationeel bewijs voor een uitdijend heelal. Decennia lang was de wetenschappelijke gemeenschap verdeeld tussen aanhangers van de oerknal en het rivaliserende stationaire model die beide verklaringen boden voor de waargenomen uitdijing, maar het stationaire model bepaalde een eeuwig universum in tegenstelling tot de eindige leeftijd van de oerknal. In 1964 werd de CMB ontdekt, die veel kosmologen ervan overtuigde dat het stationaire model was weerlegd aangezien, in tegenstelling tot het stationaire model, de hete oerknal een uniforme achtergrondstraling door het hele universum voorspelde, veroorzaakt door de hoge temperaturen en dichtheden in het verre verleden. Een breed scala aan empirisch bewijs pleit sterk in het voordeel van de oerknal, die nu in wezen universeel wordt aanvaard. | ||
=== Inflatie en baryogenese === | === Inflatie en baryogenese === |
Versie van 29 dec 2021 10:24
De Oerknal (engels: Big Bang) theorie is het heersende kosmologische model dat het bestaan van het waarneembare heelal verklaart uit de vroegst bekende perioden door de daaropvolgende grootschalige evolutie.[1] Het model beschrijft hoe het universum uitdijde vanuit een begintoestand van hoge energiedichtheid en temperatuur[2] en biedt een uitgebreide verklaring voor een breed scala aan waargenomen verschijnselen, waaronder de overvloed aan lichte elementen, de kosmische microgolfachtergrond (CMB) en grootschalige structuur.
Cruciaal is dat de theorie verenigbaar is met wet van Hubble-Lemaître - de waarneming dat hoe verder een sterrenstelsel is, hoe sneller het zich van de aarde verwijdert. Door deze kosmische uitdijing terug in de tijd te extrapoleren met behulp van de bekende natuurkunde wetten, beschrijft de theorie een steeds meer geconcentreerde kosmos voorafgegaan door een singulariteit waarin ruimte en tijd betekenis verliezen (meestal "de oerknal-singulariteit" genoemd).[3] Gedetailleerde metingen van de expansiesnelheid van het universum plaatsen de oerknal-singulariteit op ongeveer 13,8 miljard jaar geleden, wat dus wordt beschouwd als de leeftijd van het universum.[4]
Na zijn aanvankelijke expansie, een gebeurtenis die op zichzelf vaak "de oerknal" wordt genoemd, koelde het universum voldoende af om de vorming van subatomaire deeltjes en later atomen mogelijk te maken. Gigantische wolken van deze oerelementen - meestal waterstof, met wat helium en lithium - vloeiden later samen door zwaartekracht en vormden vroege sterren en sterrenstelsels, waarvan de afstammelingen vandaag de dag zichtbaar zijn. Naast deze oorspronkelijke bouwmaterialen observeren astronomen de zwaartekrachtseffecten van een onbekende donkere materie die sterrenstelsels omringt. Het grootste deel van het zwaartekrachtpotentiaal in het universum lijkt in deze vorm te zijn, en de oerknaltheorie en verschillende waarnemingen geven aan dat dit overmatige zwaartekrachtpotentieel niet wordt gecreëerd door baryonische materie, zoals normale atomen. Metingen van de roodverschuivingen van supernovae geven aan dat de uitdijing van het heelal versnelt, een waarneming die wordt toegeschreven aan het bestaan van donkere energie.
Georges Lemaître merkte voor het eerst op in 1927 dat een uitdijend heelal terug in de tijd kan worden getraceerd naar een enkel punt dat hij het "oeratoom" noemde. Edwin Hubble bevestigde door analyse van galactische roodverschuivingen in 1929 dat sterrenstelsels inderdaad uit elkaar drijven; dit is belangrijk observationeel bewijs voor een uitdijend heelal. Decennia lang was de wetenschappelijke gemeenschap verdeeld tussen aanhangers van de oerknal en het rivaliserende stationaire model die beide verklaringen boden voor de waargenomen uitdijing, maar het stationaire model bepaalde een eeuwig universum in tegenstelling tot de eindige leeftijd van de oerknal. In 1964 werd de CMB ontdekt, die veel kosmologen ervan overtuigde dat het stationaire model was weerlegd aangezien, in tegenstelling tot het stationaire model, de hete oerknal een uniforme achtergrondstraling door het hele universum voorspelde, veroorzaakt door de hoge temperaturen en dichtheden in het verre verleden. Een breed scala aan empirisch bewijs pleit sterk in het voordeel van de oerknal, die nu in wezen universeel wordt aanvaard.
Inflatie en baryogenese
Over de vroegste fasen van de oerknal wordt veel gespeculeerd, aangezien er geen astronomische gegevens over beschikbaar zijn. In de meest gangbare modellen was het heelal homogeen en isotroop gevuld met een zeer hoge energiedichtheid en enorme temperaturen en druk, en dijde het zeer snel uit en koelde het af. De periode van 0 tot 10−43 seconden in de expansie, het Planck-tijdperk, was een fase waarin de vier fundamentele krachten — de elektromagnetische kracht, de sterke kernkracht, de zwakke kernkracht en de zwaartekracht waren verenigd als één.[5] In deze fase, de karakteristieke schaallengte van het heelal was de Plancklengte, 1.6×10−35 m, en had bijgevolg een temperatuur van ongeveer 1032 graden Celsius. Zelfs het concept van een deeltje valt onder deze omstandigheden uiteen. Een goed begrip van deze periode wacht op de ontwikkeling van een theorie van kwantumzwaartekracht.[6] Het Planck-tijdperk werd opgevolgd door het grootse eenwordingstijdperk beginnend bij 10−43 seconden, waar de zwaartekracht zich scheidde van de andere krachten toen de temperatuur van het universum daalde.
Op ongeveer 10−37 seconden na de expansie, veroorzaakte een faseovergang een kosmische inflatie, waarbij het universum exponentieel groeide, niet beperkt door de lichtsnelheidsinvariantie, en de temperatuur daalde met een factor 100.000. Microscopische kwantumfluctuatiesen die optraden vanwege Heisenberg's onzekerheids principe werden versterkt tot de zaden die later de grootschalige structuur van het universum zouden vormen. Rond 10−36 seconden begint het elektrozwakke tijdperk wanneer de sterke kernkracht zich scheidt van de andere krachten, en alleen de elektromagnetische kracht en zwakke kernkracht verenigd blijven.[7]
De inflatie stopte rond de 10−33 tot 10−32 seconden, waarbij het volume van het universum met een factor van minstens 1078 toenam. Opwarming vond plaats totdat het universum de temperaturen bereikte die nodig zijn voor de productie van een quark-gluonplasma evenals voor alle andere elementaire deeltjes. De temperaturen waren zo hoog dat er willekeurige bewegingen van deeltjes waren op relativistische snelheden, en deeltje-antideeltje paren van allerlei soorten werden voortdurend gecreëerd en vernietigd in botsingen. Op een gegeven moment schond een onbekende reactie genaamd baryogenese het behoud van baryongetal, wat leidde tot een zeer kleine overmaat van quarks en leptons over antiquarks en antileptons - in de orde van grootte van één deel op 30 miljoen. Dit resulteerde in de overheersing van materie over antimaterie in het huidige universum.
Bronnen, noten en/of referenties
|
Bronvermelding anderstalige Wikipedia|taal=en|titel=Big Bang|oldid=576832176|datum=12-2021
Astronomie |
---|
|