Wikisage, de vrije encyclopedie van de tweede generatie, is digitaal erfgoed

Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.

  • Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
  • Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
rel=nofollow

Bliksem

Uit Wikisage
(Doorverwezen vanaf Weerlicht)
Naar navigatie springen Naar zoeken springen
Onweer met veel bliksems
op het zelfde moment.

Bliksem is een elektrische ontlading in de atmosfeer. Het is het hoofdverschijnsel van onweer en het heeft donder als bijverschijnsel.

Niet altijd is er bij bliksem een vonk (bliksemschicht) zichtbaar. Ziet men alleen de wolken oplichten, dan spreekt men van weerlicht.

Bliksem is een van de gevaarlijkste weersverschijnselen. Het is dan ook raadzaam om bescherming te zoeken, zeker wanneer het onweer dichtbij is en de tijd tussen bliksem en donder minder dan tien seconden bedraagt. Het gevaar om persoonlijk door de bliksem getroffen te worden is relatief gering, maar de gevolgen kunnen ernstig zijn. Gemiddeld worden in Nederland vijf mensen per jaar dodelijk door de bliksem getroffen. Vroeger lag dit aantal nog veel hoger: in Nederland werden honderd jaar geleden gemiddeld zo'n twintig mensen per jaar dodelijk getroffen.

Ontstaan van bliksem

Bliksem ontstaat door de verdeling van elektrische lading over een onweerswolk. Wat betreft de processen, die grote delen van de wolk een afwijkende lading kunnen geven, zijn er wel tien theorieën. De ladingsverdeling hoeft op zichzelf nog niet tot het ontstaan van plotselinge ontladingen, de bliksems, te leiden. Er zijn vele lekstromen, die de ontstane ladingsverschuiving tegenwerken, zodat bliksems niet strikt noodzakelijk zijn. Evenmin is zonder meer duidelijk, waarom een ontlading tussen de onderzijde van de wolk en de grond zou optreden, dat wil zeggen de blikseminslag. Wat dit laatste betreft moeten we bedenken, dat de aarde een goede geleider is en dat gelijknamige elektrische ladingen elkaar afstoten. Omdat in de meeste gevallen de negatief geladen wolken zich onderaan bevinden, zullen onder de wolk de elektronen in de aardkorst verdreven worden, zodat de aarde plaatselijk een positieve lading krijgt. Onder de wolk heerst daarom een sterk elektrisch veld, dat omhoog gericht is. De elektrische spanning in dat veld is echter 100 à 1000 keer te klein om een ontlading mogelijk te maken. De doorslagspanning van lucht is namelijk niet minder dan drie miljoen volt per meter! In zeldzame gevallen treedt ook een omgekeerde ladingsverdeling op, met een positieve lading aan de onderzijde van de bewolking en bijgevolg een negatieve lading aan het aardoppervlak. In dat geval spreekt men van een positieve bliksem als er ontlading optreedt.

Als gevolg van de onregelmatige verdeling van de ladingen in de wolk kan plaatselijk wel enige vonkvorming optreden. Hierdoor vindt dan ionisatie plaats waardoor de geleiding sterk toeneemt. De hoogste potentiaalverschillen verplaatsen zich daardoor naar de tip van het geleidende kanaal. Daar vormen zich weer vonken en herhaalt zich het proces. Deze kettingreactie leidt dus tot een zichzelf voortplantend geleidend kanaal, de zogenaamde voorontlading. Overigens heeft dit 'kanaal' een doorsnede van slechts enkele centimeters. De voorontlading groeit zo stootsgewijs in stappen van enkele tientallen meters in de richting van de grootste spanningsverschillen (stepped leader). Soms treden bij dit groeien vertakkingen op.

Een echt grote stroom loopt er nog niet: de (negatieve) lading schuift af en toe iets verder op in het geleidende kanaal, waarbij dat kanaal telkens iets oplicht. De daalsnelheid van de voorontlading is 'slechts' zo'n 1500 kilometer per seconde.

Een of meer takken van de voorontlading kunnen dicht bij de grond komen, op 50 tot 100 meter hoogte. Het kanaal heeft dan ongeveer de elektrische spanning van de wolk en de veldsterkte (volt per meter hoogteverschil) boven de grond loopt dus enorm op. Met name boven spitse punten is er dan geen sprake meer van rustige ionisatie gepaard gaande met Sint Elmusvuur, maar eerder van krachtige vonkvorming, die zich in de richting van het naderende voorontladingskanaal spoedt. Men noemt dit om begrijpelijke redenen de vangontlading.

Als de vangontlading contact maakt, is er een soort kortsluiting ontstaan tussen de ladingscentra in wolk en aarde. Te beginnen bij het contactpunt gaan elektronen dan in grote aantallen sneller bewegen. Even later vult deze sterke stroom het hele kanaal. Men noemt dit de hoofdontlading of soms ook wel de 'terugslag' (return stroke). Dit verschijnsel, dat met hevig oplichten gepaard gaat, verplaatst zich met ca. 100.000 tot 150.000 km/s van de aarde naar de wolk. In het hier geschetste voorbeeld bewegen de elektronen omlaag en in ons spraakgebruik wordt dan de stroomrichting omhoog gerekend. De elektrische stroom loopt immers van plus naar min, tegengesteld aan de elektronen.

Dit is nog niet alles. Als de bliksem uitdooft, vindt er een snelle herverdeling van lading in de wolk plaats omdat alle bereikbare lading verplaatst is. Het kanaal wordt dan vaak opnieuw gebruikt, allereerst door een nieuwe, snelle, nu onvertakte, voorontlading, en vervolgens door een nieuwe opwaartse hoofdontlading. Niet zelden herhaalt zich dit alles enkele malen. Wat wij dus als een bliksem waarnemen, bestaat dus vaak uit een aantal zogenaamde 'deelbliksems'.

Effecten

  • Een gewoon stuk ijzer of staal kan in een magneet veranderen, als het door de bliksem geraakt wordt.
  • De binnenkant van de bliksem is heter dan de oppervlakte van de zon.

Veiligheidsadviezen

Onweersbuien kondigen zich meestal luid en duidelijk aan en ook in de weersverwachting wordt de kans op onweer aangegeven. Bij naderend onweer is men binnenshuis redelijk veilig. Veilig is ook een metalen auto met gesloten dak of metalen caravan, doordat deze bij een blikseminslag fungeren als kooi van Faraday en de lading direct wordt afgevoerd. De restlading die op de auto achterblijft, is zo gering dat het na een inslag niet, zoals soms wordt beweerd, nodig is tegen een paaltje te rijden.

Het licht van de bliksem is bijzonder fel en een nabije inslag kan verblindend zijn.

In huis

Een huis zonder bliksemafleider is geen perfecte Kooi van Faraday. Bij een (nabije) blikseminslag kan de elektrische stroom zich een weg banen langs leidingen en zo elektrische apparaten beschadigen. De elektrische velden tijdens een ontlading kunnen echter zo sterk zijn dat ook niet aangesloten elektronica beschadigd raakt doordat alle geleidende delen als antenne fungeren en hoge spanningen veroorzaken.

Ook een telefoon met vaste aansluiting of kabels van televisies kunnen bliksem geleiden.[1] Elektronische apparatuur kan beschadigd raken en er kan brand ontstaan na een blikseminslag. Het is ook mogelijk dat de bliksem niet inslaat op het huis, maar via de kabels naar binnen komt.[2][3][4]

Afstand tot de bliksem

Om te bepalen hoe ver de bliksem verwijderd is, kan men het aantal seconden tellen tussen het zien van de bliksem en het horen van de donder. Dit aantal gedeeld door drie is ongeveer de afstand in kilometers. Elke drie seconden betekent namelijk een afstand van ongeveer één kilometer, omdat het geluid met een snelheid van 343 meter per seconde gaat en het licht je (bijna) meteen bereikt.

Het hoogste punt

Vrijwel alle dingen geleiden stroom beter dan lucht dat doet. Daarom zal de bliksem bij voorkeur via bijvoorbeeld bomen en hoge gebouwen stromen. Ook ijzeren hekwerken zijn goede geleiders.

De blikseminslag veroorzaakt echter ook een gevaar door het potentiaalverschil in de grond. Alle geleidende voorwerpen, zoals een metalen hek maar ook een menselijk lichaam, nemen de stroom uit de grond op en geven hem verderop weer af, doordat ze beter geleiden dan de grond zelf.

Als vuistregel geldt dat de bliksem door een hoog object wordt "aangetrokken" in een gebied met een straal van ca. 1/3 van de hoogte van het object.

In een woestijn zal de bliksem het laagste punt opzoeken. Het zand is namelijk een zeer goede isolator, en de bliksem zal dus het punt opzoeken waar zo min mogelijk zand hoeft te worden doorkruist om bij het grondwater te komen. In een zandwoestijn kan men daardoor in de dalen zeldzame glazen fulgurieten vinden daar waar de stroom van een bliksem door het zand is gegaan.

Verdere gevolgen

Een ontlading geeft in het elektro-magnetische spectrum ook een grote beïnvloeding: grote pulsen, dus met een grote bandbreedte. Hierdoor is op radioverbindingen die met amplitudemodulatie werken veel storing waarneembaar. Op verbindingen waarbij gebruik wordt gemaakt van frequentiemodulatie is deze verstoring vele malen kleiner. Op een radio-ontvanger die is afgestemd op de middengolf is daarom het optreden van ontladingen al op grote afstand waar te nemen als geknetter.

Ter plaatse van de inslag kunnen elektrische stromen tot meer dan 100 kA optreden. Die kunnen vernieling van een gebouw of een begin van brand in een gebouw veroorzaken.

Onder impuls van de sterke elektrische ontladingen treden ook plaatselijk wat minder gewone chemische reacties op. Zo wordt er bijvoorbeeld tijdelijk een hogere concentratie aan ozon door onweer veroorzaakt, iets wat mensen soms als een scherpe prikkelende geur waarnemen.

Antennes

Tenslotte kan een ontlading met name in de buurt van antennes grote gevolgen hebben. Antennes staan vaak op of bij het hoogste punt, zijn vaak geaard en vormen zo een potentieel inslagpunt. Maar ook een ontlading in de nabijheid kan in de antenne en antenneleiding enorme stromen induceren. Via de antenneleiding kan alle aangesloten apparatuur, alsmede het 230V-lichtnet (via de netvoeding) voor een groot aantal beschadigde apparaten zorgen.

Hoogspanningsnetten en bliksemspanningen

Ook hoogspanningsnetten zijn onderhevig aan de invloeden van de bliksem. Bij een directe inslag op een geleider of een mast van het hoogspanningsnet, kunnen via de mast of de kabel stromen van soms wel 20 tot 50 kA naar aarde vloeien en problemen veroorzaken. Om die reden worden zware eisen aan hoogspanningsmateriaal gesteld, vastgelegd in internationale voorschriften. Om na te gaan of aan deze eisen wordt voldaan, worden onder meer in het hoogspanningslaboratorium van de KEMA in Arnhem zogeheten stootspanningproeven uitgevoerd, die aantonen of het materiaal aan de gestelde eisen voldoet.

Voor een objectief en vergelijkbaar onderzoek naar de diëlektrische vastheid van isolatoren en ander hoogspanningsmateriaal, is de vorm waaraan deze bliksemspanningsstoot moet voldoen internationaal genormaliseerd. Deze vorm is overeengekomen na talrijke metingen aan blikseminslagen over de gehele wereld.

Een stoot volgens de internationale voorschriften bestaat uit een volle golf met een aperiodiek karakter.

De definitie voor deze vorm is 1,2/50 μs, waarbij de tijd van 1,2 μs de fronttijd T1 is vanaf het begin van 0 kV tot de topwaarde en T2 (50 μs) betrekking heeft op de tijd, waarin de halfwaardetijd van de stootspanning is bereikt. Om een goed beeld te verkrijgen van de diëlektrische vastheid van een proefobject, worden vijf positieve en vijf negatieve stoten gegeven, aangezien beide polariteiten kunnen voorkomen.

In de grafiek is een spanningsgolf met de vorm 1,2/50 μs afgebeeld van hoogspanningsmateriaal voor een bedrijfsspanning van 150 kV, waarbij een bliksemspanning hoort van 750 kV. Na 50 μs is de halfwaardetijd (T2) bereikt en is de spanning gedaald tot 375 kV.

De totale tijd overigens die de spanningsstoot met vorm 1,2/50 μs nodig heeft om weer tot 0 kV te dalen, bedraagt circa 400 μs.

Zoals onder het artikel Hoogspanning wordt genoemd, hanteren wij in Nederland een aantal spanningsniveaus, lopend van 10 kV tot 380 kV. Bij elke bedrijfsspanning hoort een bliksemspanning, zoals in onderstaande tabel is vermeld. De genoemde spanningen zijn de houdspanningen tussen fase en aarde. Bij deze spanningen mogen tijdens de proefnemingen geen door- of overslagen optreden. Zoals in de tabel te zien is, is de bliksemspanning bij de bedrijfsspanningen 220 kV en 380 kV rond de miljoen volt of hoger.

Bedrijfsspanning

(kV)

Topwaarde

bliksemspanning

(kV)

10 75
20 125
30 170
50 280
110 550
150 750 (zie grafiek)
220 950
380 1425

Zie ook

Referenties

Bronvermelding :

  • De tekst op deze pagina, een eerdere versie daarvan of een deel van de tekst is afkomstig van de website van het KNMI, en mag vrij gebruikt worden onder vermelding van het KNMI als bron.
rel=nofollow