Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Gebruiker:Franciscus/kladblok: verschil tussen versies
Geen bewerkingssamenvatting |
Geen bewerkingssamenvatting |
||
Regel 329: | Regel 329: | ||
:* Verhoudingen en evenredigheden | :* Verhoudingen en evenredigheden | ||
==Kenmerken van deelbaarheid== | ==Kenmerken van deelbaarheid== | ||
Aan een getal kan meestal worden gezien of dit deelbaar is door een priemgetal. Om de deelbaarheid van een getal | Aan een getal kan meestal na enige inspanning worden gezien of dit deelbaar is door een priemgetal. Een geheel getal is deelbaar door een ander geheel getal als bij de deling de rest 0 is. Zo is '''35''' deelbaar door '''5''', want '''35 : 5 = 7''' rest '''0''',en is '''38''' niet deelbaar door '''7''', want '''38 : 7 = 5''' rest '''2'''. | ||
:*Een getal is deelbaar door '''2''' , als het laatste cijfer deelbaar is door '''2'''. | <br/>Om de deelbaarheid van een getal van een geheel getal te kunnen achterhalen, bestaan eenvoudige middelen : de zogemaamde '''kenmerken van deelbaarheid'''. | ||
===Deelbaarheid door 2=== | |||
:*Een getal is deelbaar door '''2''' , als het laatste cijfer deelbaar is door '''2''', als het laatste cijfer een even cijfer is, namelijk '''0, 2, 4, 6''' of '''8'''. | |||
<br/>'''''Voorbeeld 1''''' | <br/>'''''Voorbeeld 1''''' | ||
<table width="66%" border="1"> | <table width="66%" border="1"> | ||
Regel 344: | Regel 346: | ||
</tr> | </tr> | ||
</table> | </table> | ||
===Deelbaarheid door 3=== | |||
:*Een getal is deelbaar door '''3''' , als de som van de cijfers deelbaar is door '''3'''. | :*Een getal is deelbaar door '''3''' , als de som van de cijfers deelbaar is door '''3'''. | ||
<br/>'''''Voorbeeld 2''''' | <br/>'''''Voorbeeld 2''''' | ||
Regel 359: | Regel 362: | ||
</tr> | </tr> | ||
</table> | </table> | ||
===Deelbaarheid door 4=== | |||
:*Voor getalle >100 is de deelbaarheid door '''4''' eenvoudig vast te stellen, als het getal van de laatste twee cijfers deelbaar is door '''4'''. | |||
<br/>'''''Voorbeeld 3''''' | |||
<table width="66%" border="1"> | |||
<tr> | |||
<td align="left" bgcolor=#fff7cb> | |||
<br/> | |||
<span style="font-size:125%;"> | |||
<font color=black> | |||
*''Het getal'' '''123456''' ''is deelbaar door'' '''4''' , ''want'' '''56''' ''is deelbaar door'' '''4''' | |||
<br/> | |||
</font></span> | |||
</td> | |||
</tr> | |||
</table> | |||
===Deelbaarheid door 5=== | |||
:*Een getal is deelbaar door '''5''' , als het laatste cijfer deelbaar is door '''5'''. | :*Een getal is deelbaar door '''5''' , als het laatste cijfer deelbaar is door '''5'''. | ||
<br/>'''''Voorbeeld 3''''' | <br/>'''''Voorbeeld 4''''' | ||
<table width="66%" border="1"> | |||
<tr> | |||
<td align="left" bgcolor=#fff7cb> | |||
<br/> | |||
<span style="font-size:125%;"> | |||
<font color=black> | |||
*''Het getal'' '''12345''' ''is deelbaar door'' '''5''', ''want het laatste cijfer ''' = 5''' | |||
<br/> | |||
</font></span> | |||
</td> | |||
</tr> | |||
</table> | |||
:*Merk op, dat het getal '''12345''' in '''''Voorbeeld 2''''' zowel deelbaar is ''' 3''', als door '''5''', zodat : | |||
::'''12345''' deelbaar is door'' '''15''' | |||
===Deelbaarheid door 6=== | |||
:*Een getal is deelbaar door '''6''' , als het getal zowel door '''2''' als door '''3''' deelbaar is. | |||
:* Merk op, dat het getal '''123456'''uit '''''Voorbeeld 1''''', zowel deelbaar is door '''2''' als door '''3'''. | |||
===Deelbaarheid door 7=== | |||
:*Een getal is deelbaar door '''7''' , als het getal, dat wordt verkregen door het laatste cijfer weg te laten en 2 maal af te trekken van het getal gevormd door de overblijvende cijfers, deelbaar is door 7. | |||
<br/>'''''Voorbeeld 4''''' | |||
<table width="66%" border="1"> | |||
<tr> | |||
<td align="left" bgcolor=#fff7cb> | |||
<br/> | |||
<span style="font-size:125%;"> | |||
<font color=black> | |||
*''Het getal'' '''476''' ''is deelbaar door'' '''7''' '', want '''47 - 2 • 6 = 35''' | |||
:::is deelbaar door '''7''' | |||
<br/> | |||
</font></span> | |||
</td> | |||
</tr> | |||
</table> | |||
===Deelbaarheid door 8=== | |||
:*Voor getallen >1000 is de deelbaarheid door '''8''' eenvoudig vast te stellen, als het getal van de laatste drie cijfers deelbaar is door '''8'''. | |||
<br/>'''''Voorbeeld 5''''' | |||
<table width="66%" border="1"> | <table width="66%" border="1"> | ||
<tr> | <tr> | ||
Regel 367: | Regel 422: | ||
<span style="font-size:125%;"> | <span style="font-size:125%;"> | ||
<font color=black> | <font color=black> | ||
*''Het getal'' ''' | *''Het getal'' '''123456''' ''is deelbaar door'' '''8''' , ''want'' '''456''' ''is deelbaar door'' '''8''' | ||
<br/> | <br/> | ||
</font></span> | </font></span> | ||
Regel 375: | Regel 428: | ||
</tr> | </tr> | ||
</table> | </table> | ||
:*Een getal is deelbaar door '''11''' , als de som van de cijfers op de oneven plaatsen min de de som van de cijfers op de even | :*Een getal is deelbaar door '''11''' , als de som van de cijfers op de oneven plaatsen min de de som van de cijfers op de even | ||
:plaatsen = '''0''' of deelbaar door '''11'''. | :plaatsen = '''0''' of deelbaar door '''11'''. | ||
Regel 405: | Regel 468: | ||
</table> | </table> | ||
• | |||
• 3 als de cijfersom deelbaar is door 3; deze test kan herhaald worden voor de cijfersom, als die te groot is om deelbaarheid door 3 direct vast te stellen, | |||
• 4 als het getal van de laatste twee cijfers (de rest bij deling door 100) deelbaar door 4 is, | |||
• 5 als het getal eindigt op 0 of 5, | |||
• 6 als het getal zowel deelbaar is door 2 als door 3, | |||
• • 8 als het getal van de laatste drie cijfers (de rest bij deling door 1000) deelbaar door 8 is, | |||
• 9 als de cijfersom deelbaar is door 9; deze test kan herhaald worden voor de cijfersom, als die te groot is om deelbaarheid door 9 direct vast te stellen | |||
• 10 als het laatste cijfer een 0 is, | |||
• 11 als het resultaat, verkregen door de cijfers afwisselend op te tellen en af te trekken, deelbaar door 11 is (bij herhaald uitvoeren van de procedure komt men uit op 0). Bijvoorbeeld: 2.454.232 is deelbaar door 11, want 2 - 4 + 5 - 4 + 2 - 3 + 2 = 0, | |||
• 12 als het getal zowel deelbaar is door 3 als door 4. | |||
• 13 als het getal, dat bekomen wordt door achtereenvolgens het laatste cijfer weg te laten, dat cijfer op te tellen bij het getal gevormd door de overblijvende cijfers, en af te trekken van de tientallen daarvan, deelbaar is door 13. Zo is bijv. 572 deelbaar door 13, want 57 + 2 - 10 × 2 = 39 is deelbaar door 13. Deze bewerking komt er immers op neer dat men het 91-voud van het laatste cijfer aftrekt van het onderzochte getal, en elk 91-voud is deelbaar door 13. Deze test kan herhaald worden voor het bekomen getal, als dat te groot is om deelbaarheid door 13 direct vast te stellen, | |||
• 14 als het getal zowel deelbaar is door 2 als door 7. | |||
• 15 als het getal zowel deelbaar is door 3 als door 5. | |||
Versie van 15 feb 2010 17:09
Deze pagina gebruik ik om nieuwe artikelen even op te bergen en te bewerken, vóórdat ik ze als bijdrage op Wikisage zet. Ook kan ik hier enkele geheugensteuntjes kwijt.
Franciscus 4 feb 2009 14:55 (UTC)
- 2 2/ 9 + 5/ 9 = 2 7/ 9
Franciscus 20 jul 2009 13:33 (UTC)
- sin α = BC / AB = ½ AB / AB = 0,5
- Voor zijde AC wordt de stelling van Pythagoras toegepast, en wel als volgt:
- AC = √ ( AB ) 2 – ( BC ) 2 = √ ( AB ) 2 – ( ½ AB ) 2 = √ ¾ (AB) 2 = ½ AB√3
- Hieruit volgt dan :
- cos α = AC / AB = ½ AB √ 3 / AB = ½ √ 3 ( = 8,66 )
- en :
- tg α = BC / AC = ½ AB / ½ AB√3 = 1/3 . √3 = 0,577
Quotiënt | Φ |
---|---|
1 : 1 | 1 |
2 : 1 | 2 |
3 : 2 | 1,5 |
5 : 3 | 1,67 |
8 : 5 | 1,6 |
13 : 8 | 1.62500 |
89 : 55 | 1,6181818 |
610 : 377 | 1,61537135 |
4181 : 2584 | 1,61803405 |
28657 : 17711 | 1,61803399 |
196418 : 121393 | 1,618033989 |
Rekenkunde ( 6 )
In Rekenkunde ( 5 ) werden de Breuken behandeld met hun specifieke eigenschappen.
In dit artikel wordt met de nodige voobeelden aandacht besteed aan:
- Samengestelde breuken
- Herleiden van breuken naar decimale getallen
- Herleiden van decimale getallen naar breuken
- Vereenvoudiging van breuken met de Grootste Gemene Deler ( GGD )
- Ontbinden in factoren
- Vereenvoudiging van breuken met het Kleinste Gemene Veelvoud ( KGV )
Samengestelde breuken
Twee samengestelde breuken zijn te vinden in :
Voorbeeld 1
|
Deze samengestelde breuken kunnen door deling worden herleid tot gewone breuken.
Voorbeeld 2
|
Door de 2 e breuk om te keren, wordt de deling een vermenigvuldiging!
Voorbeeld 3
|
Herleiden van breuken naar decimale getallen
Sommige breuken kunnen eenvoudig worden herleid naar decimale breuken.
Twee samengestelde breuken zijn te vinden in :
Voorbeeld 4
3 3 / 5 |
Uitgewerkt geeft dit:
|
En ook:
|
Herleiden van decimale getallen naar breuken
Sommige decimale getallen kunnen eenvoudig worden herleid naar breuken.
Voorbeeld 5
|
Voorbeeld 6
|
Grootste gemene deler ( GGD )
Voor het vereenvoudigen van grote breuken, wordt gebruik gemaakt van de grootste gemene deler.
Hierbij worden zowel de teller als de noemer door het grootst mogelijke getal gedeeld.
Voorbeeld 7
|
Ontbinden in factoren
Alvorens met het kleinste gemene veelvoud aan de slag te gaan, is het nodig even een uitstapje te maken naar het ontbinden in factoren.
Bij het ontbinden in factoren wordt een getal ontleed in de kleinst mogelijke factoren, die alleen door zich zelf deelbaar zijn. Dit worden ook wel priemgetallen genoemd.
De priemgetallen tussen 1 en 20 zijn :
- 1
- 2
- 3
- 5
- 7
- 11
- 13
- 17
- 19
Voorbeeld 8
|
Ook zeer grote getallen kunnen worden ontbonden in factoren.
Voorbeeld 9
|
Kleinste gemene veelvoud ( KGV )
Als een aantal breuken met verschillende noemers moet worden opgeteld, dan moeten deze noemers aan elkaar gelijk worden gemaakt.
Voorbeeld 10
|
Met deze relatief kleine noemers is het vrij eenvoudig het KGV vast te stellen. Anders wordt het, als de noemers groot worden.
Voorbeeld 11
|
Rekenkunde ( 7 )
Het onderwerp Rekenkunde wordt afgesloten met een aantal bizondere onderwerpen, te weten:
- De kenmerken van deelbaarheid van een getal
- Worteltrekken door ontbinden in factoren
- Procent en promille
- Verhoudingen en evenredigheden
Kenmerken van deelbaarheid
Aan een getal kan meestal na enige inspanning worden gezien of dit deelbaar is door een priemgetal. Een geheel getal is deelbaar door een ander geheel getal als bij de deling de rest 0 is. Zo is 35 deelbaar door 5, want 35 : 5 = 7 rest 0,en is 38 niet deelbaar door 7, want 38 : 7 = 5 rest 2.
Om de deelbaarheid van een getal van een geheel getal te kunnen achterhalen, bestaan eenvoudige middelen : de zogemaamde kenmerken van deelbaarheid.
Deelbaarheid door 2
- Een getal is deelbaar door 2 , als het laatste cijfer deelbaar is door 2, als het laatste cijfer een even cijfer is, namelijk 0, 2, 4, 6 of 8.
Voorbeeld 1
|
Deelbaarheid door 3
- Een getal is deelbaar door 3 , als de som van de cijfers deelbaar is door 3.
Voorbeeld 2
|
Deelbaarheid door 4
- Voor getalle >100 is de deelbaarheid door 4 eenvoudig vast te stellen, als het getal van de laatste twee cijfers deelbaar is door 4.
Voorbeeld 3
|
Deelbaarheid door 5
- Een getal is deelbaar door 5 , als het laatste cijfer deelbaar is door 5.
Voorbeeld 4
|
- Merk op, dat het getal 12345 in Voorbeeld 2 zowel deelbaar is 3, als door 5, zodat :
- 12345 deelbaar is door 15
Deelbaarheid door 6
- Een getal is deelbaar door 6 , als het getal zowel door 2 als door 3 deelbaar is.
- Merk op, dat het getal 123456uit Voorbeeld 1, zowel deelbaar is door 2 als door 3.
Deelbaarheid door 7
- Een getal is deelbaar door 7 , als het getal, dat wordt verkregen door het laatste cijfer weg te laten en 2 maal af te trekken van het getal gevormd door de overblijvende cijfers, deelbaar is door 7.
Voorbeeld 4
|
Deelbaarheid door 8
- Voor getallen >1000 is de deelbaarheid door 8 eenvoudig vast te stellen, als het getal van de laatste drie cijfers deelbaar is door 8.
Voorbeeld 5
|
- Een getal is deelbaar door 11 , als de som van de cijfers op de oneven plaatsen min de de som van de cijfers op de even
- plaatsen = 0 of deelbaar door 11.
Voorbeeld 4
|
- Een getal waarbij de som van de cijfers op de oneven plaatsen min de de som van de cijfers op de even plaatsen deelbaar is door 11, is gegeven in :
Voorbeeld 5
|
• • 3 als de cijfersom deelbaar is door 3; deze test kan herhaald worden voor de cijfersom, als die te groot is om deelbaarheid door 3 direct vast te stellen, • 4 als het getal van de laatste twee cijfers (de rest bij deling door 100) deelbaar door 4 is, • 5 als het getal eindigt op 0 of 5, • 6 als het getal zowel deelbaar is door 2 als door 3, • • 8 als het getal van de laatste drie cijfers (de rest bij deling door 1000) deelbaar door 8 is, • 9 als de cijfersom deelbaar is door 9; deze test kan herhaald worden voor de cijfersom, als die te groot is om deelbaarheid door 9 direct vast te stellen • 10 als het laatste cijfer een 0 is, • 11 als het resultaat, verkregen door de cijfers afwisselend op te tellen en af te trekken, deelbaar door 11 is (bij herhaald uitvoeren van de procedure komt men uit op 0). Bijvoorbeeld: 2.454.232 is deelbaar door 11, want 2 - 4 + 5 - 4 + 2 - 3 + 2 = 0, • 12 als het getal zowel deelbaar is door 3 als door 4. • 13 als het getal, dat bekomen wordt door achtereenvolgens het laatste cijfer weg te laten, dat cijfer op te tellen bij het getal gevormd door de overblijvende cijfers, en af te trekken van de tientallen daarvan, deelbaar is door 13. Zo is bijv. 572 deelbaar door 13, want 57 + 2 - 10 × 2 = 39 is deelbaar door 13. Deze bewerking komt er immers op neer dat men het 91-voud van het laatste cijfer aftrekt van het onderzochte getal, en elk 91-voud is deelbaar door 13. Deze test kan herhaald worden voor het bekomen getal, als dat te groot is om deelbaarheid door 13 direct vast te stellen, • 14 als het getal zowel deelbaar is door 2 als door 7. • 15 als het getal zowel deelbaar is door 3 als door 5.
11 als het resultaat, verkregen door de cijfers afwisselend op te tellen en af te trekken, deelbaar door 11 is (bij herhaald uitvoeren van de procedure komt men uit op 0). Bijvoorbeeld: 2.454.232 is deelbaar door 11, want 2 - 4 + 5 - 4 + 2 - 3 + 2 = 0,