Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Over de eindigheid van driehoeken: verschil tussen versies
k (Franciscus heeft pagina Over de eindigheid van driehoepen hernoemd naar Over de eindigheid van driehoeken: Tikfout) |
k (Lidewij heeft pagina Essay:Over de eindigheid van driehoeken hernoemd naar Over de eindigheid van driehoeken over een doorverwijzing) |
||
(14 tussenliggende versies door 2 gebruikers niet weergegeven) | |||
Regel 3: | Regel 3: | ||
In [[Meetkunde ( Driehoeken )]] wordt de stelling van Pythagoras behandeld. Deze luidt: | In [[Meetkunde ( Driehoeken )]] wordt de stelling van Pythagoras behandeld. Deze luidt: | ||
:'''''In een rechthoekige driehoek is de som van de kwadraten van de rechthoekszijden gelijk aan het kwadraat van de schuine zijde.''''' | :'''''In een rechthoekige driehoek is de som van de kwadraten van de rechthoekszijden gelijk aan het kwadraat van de schuine zijde.''''' | ||
Deze stelling kan met de rechthoekige driehoek ('''Δ''') en de bijbehorende [[Afbeelding:ABC- 7.jpg|right|250px]] | Deze stelling kan met de gegeven rechthoekige driehoek ('''Δ''') en de bijbehorende [[Afbeelding:ABC- 7.jpg|right|250px]] | ||
rechthoekszijden '''BC''' en '''AC''' in een formule worden uitgedrukt, namelijk: | rechthoekszijden '''BC''' en '''AC''' in een formule worden uitgedrukt, namelijk: | ||
[[Afbeelding:lim | [[Afbeelding:lim xxx.jpg|left|300px]] | ||
<br/> | |||
<br/> | <br/> | ||
<br/> | <br/> | ||
Regel 138: | Regel 139: | ||
[[Afbeelding:ABC-3.jpg|left|500px]] | [[Afbeelding:ABC-3.jpg|left|500px]] | ||
[[Afbeelding:ABC-4.jpg|left|500px]] | [[Afbeelding:ABC-4.jpg|left|500px]] | ||
Regel 213: | Regel 215: | ||
Bij de reeks berekeningen, lopend tot '''''6 • sin<sup> 100</sup>α''''' , wordt het duidelijk, dat ná '''''6 • sin<sup> 50</sup>α''''' de getalwaarde naar '''''0''''' gaat naderen, of met andere woorden: | Bij de reeks berekeningen, lopend tot '''''6 • sin<sup> 100</sup>α''''' , wordt het duidelijk, dat ná '''''6 • sin<sup> 50</sup>α''''' de getalwaarde naar '''''0''''' gaat naderen, of met andere woorden: | ||
:'''''Bij''''' '''''0''''' '''''wordt de limiet bereikt van''''' '''''6 • sin<sup> n</sup>α''''' | :'''''Bij''''' '''''0''''' '''''wordt de limiet bereikt van''''' '''''6 • sin<sup> n</sup>α''''' | ||
Uit de onderstaande berekeningen kan worden vastgesteld, dat deze limiet al ongeveer bij '''''6 • sin<sup> 100</sup>α''''' | Uit de onderstaande berekeningen kan worden vastgesteld, dat deze limiet al ongeveer bij '''''6 • sin<sup> 100</sup>α''''' praktisch bereikt wordt. | ||
<br/>( ''In dit kader verdient het de aandacht, te beseffen, dat de gangbare elektronische rekenmachines niet in staat zijn om zeer kleine getallen nog met de vereiste nauwkeurigheid weer te geven''. ) | <br/>( ''In dit kader verdient het echter wel de aandacht, te beseffen, dat de gangbare elektronische rekenmachines niet in staat zijn om zeer kleine getallen nog met de vereiste nauwkeurigheid weer te geven''. ) | ||
<br/>In de bijbehorende grafiek is het naderen tot de limiet = '''''0''''' nog beter te volgen. | <br/>In de bijbehorende grafiek is het naderen tot de limiet = '''''0''''' nog beter te volgen. | ||
[[Afbeelding:lim AP.jpg|left|350px]] | [[Afbeelding:lim AP.jpg|left|350px]] | ||
Regel 256: | Regel 258: | ||
Terecht werd gesteld, dat de limiet al bijna wordt bereikt bij '''''6 • sin<sup> 100</sup>α'''''. In theorie is dit echter nog ''niet'' het geval. Hoe dat dan werkelijk is, zal hierna in '''Algemene geldigheid''' worden uiteengezet. | Terecht werd gesteld, dat de limiet al bijna wordt bereikt bij '''''6 • sin<sup> 100</sup>α'''''. In theorie is dit echter nog ''niet'' het geval. Hoe dat dan werkelijk is, zal hierna in '''Algemene geldigheid''' worden uiteengezet. | ||
==Algemene geldigheid== | ==Algemene geldigheid== | ||
In het begin werd aangegeven, dat voor het inzicht in het verloop van het proces, getallen voor de zijden '''BC''' en '''AC''' nodig waren. Bij de gekozen getalwaarden voor de zijden '''BC''' = '''''6''''' en '''AC''' = '''''8''''', blijkt dat ná '''''6 • sin<sup> 50</sup>α''''' de getalwaarde naar '''''0''''' gaat naderen. | In het begin werd aangegeven, dat voor het inzicht in het verloop van het proces, getallen voor de zijden '''BC''' en '''AC''' nodig waren. Bij de gekozen getalwaarden voor de zijden '''BC''' = '''''6''''' en '''AC''' = '''''8''''', blijkt dat ná '''''6 • sin<sup> 50</sup>α''''' de getalwaarde naar '''''0''''' gaat naderen. | ||
Regel 262: | Regel 265: | ||
<br/>Het naderen van de limiet '''''0''''' is dus voor '''''elke''''' aanliggende rechthoekszijde '''''x''''' - met de bijbehorende getalwaarde - van kracht. | <br/>Het naderen van de limiet '''''0''''' is dus voor '''''elke''''' aanliggende rechthoekszijde '''''x''''' - met de bijbehorende getalwaarde - van kracht. | ||
<br/>Verder kan worden gesteld, dat de limiet '''''0''''' ''voor elke aanliggende'' ''rechthoekszijde'' '''''x''''' theoretisch pas wordt bereikt als | <br/>Verder kan worden gesteld, dat de limiet '''''0''''' ''voor elke aanliggende'' ''rechthoekszijde'' '''''x''''' theoretisch pas wordt bereikt als | ||
<br/>'''''n''''' | <br/>'''''n''''' uiteindelijk '''ONEINDIG''' is ('''∞''') geworden. | ||
<br/>Dit wordt aldus genoteerd: | <br/>Dit wordt aldus genoteerd: | ||
[[Afbeelding:lim AQ.jpg|left|350px]] | [[Afbeelding:lim AQ.jpg|left|350px]] | ||
Regel 276: | Regel 279: | ||
Op het moment dat '''''n''''' ='''∞''' , wordt dan gelijkertijd voor de - van de oorspronkelijke rechthoekige '''Δ ''' '''ABC''' afgeleide '''Δ ''' - de '''EINDIGHEID''' bereikt. | Op het moment dat '''''n''''' ='''∞''' , wordt dan gelijkertijd voor de - van de oorspronkelijke rechthoekige '''Δ ''' '''ABC''' afgeleide '''Δ ''' - de '''EINDIGHEID''' bereikt. | ||
==Nawoord== | ==Nawoord== | ||
::Het blijkt, dat | ::Het blijkt, dat in een rechthoekige '''Δ ''' , een reeks gelijkvormige '''Δ Δ''' kunnen worden aangebracht, die vanuit een hoekpunt - in dit geval hoekpunt '''B''' met de hoek '''''α''''' - steeds kunnen worden uitgebreid. | ||
::Uit het onderzoek blijkt verder, dat de zijden '''''x''''' van de gelijkvormige '''Δ Δ''' steeds een functie van '''''sinα''''' zijn. Dit wordt aldus geschreven: | ::Uit het onderzoek blijkt verder, dat de zijden '''''x''''' van de gelijkvormige '''Δ Δ''' steeds een functie van '''''sinα''''' zijn. Dit wordt aldus geschreven: | ||
::'''''x = f ( sin<sup> n</sup>α )'''''. | ::*'''''x = f ( sin<sup> n</sup>α )'''''. | ||
::Bij verdere uitbreiding van de rechthoekige '''Δ Δ''' zullen deze uiteindelijk in het tegenoverliggende hoekpunt '''A''' ''eindigen. | ::Bij verdere uitbreiding van de rechthoekige '''Δ Δ''' zullen deze uiteindelijk in het tegenoverliggende hoekpunt '''A''' ''eindigen. | ||
::Op dat moment wordt de limiet '''''0''''' bereikt - uitgedrukt in | ::Op dat moment wordt de limiet '''''0''''' bereikt - uitgedrukt in voorgaande formule in het gele kader - en houdt de van de oorspronkelijke '''Δ ''' '''ABC''' afgeleide '''Δ ''' op te bestaan. | ||
[[Categorie:Wiskunde]] | [[Categorie:Wiskunde]] | ||
[[Categorie:Goniometrie]] | [[Categorie:Goniometrie]] |
Huidige versie van 14 sep 2022 om 20:51
Inleiding
In Meetkunde ( Driehoeken ) wordt de stelling van Pythagoras behandeld. Deze luidt:
- In een rechthoekige driehoek is de som van de kwadraten van de rechthoekszijden gelijk aan het kwadraat van de schuine zijde.
Deze stelling kan met de gegeven rechthoekige driehoek (Δ) en de bijbehorende
rechthoekszijden BC en AC in een formule worden uitgedrukt, namelijk:
Verdere uitwerking
Voor de hiernaast afgebeelde rechthoekige Δ ABC met zijden BC = 6 en AC = 8, is zijde AB met behulp van deze stelling eenvoudig te berekenen, namelijk:
( Voor het inzicht in het verdere verloop van het 'proces', is gebruik gemaakt van getallen. Hierdoor wordt 'grip' gehouden op dit proces. Ter vereenvoudiging zijn ook geen dimensies bij de zijden van de Δ geplaatst. )
Goniometrische basisfuncties
De afgebeelde rechthoekige Δ ABC bevat ook een aantal goniometrische verhoudingen, die ongeacht de afmetingen van de zijden van de Δ geldig zijn, en derhalve dimensieloos zijn. Deze goniometrische verhoudingen dienen onder meer om de hoeken van de Δ te bepalen, maar worden ook voor andere doeleinden gebruikt.
De eerste en meest bekende verhouding wordt aangeduid met de sinus van de hoek α meestal afgekort tot sin α.
De sinus van hoek α wordt als volgt omschreven:
Voor de tweede goniometrische verhouding, cosinus α, afgekort als cos α , geldt:
( In Goniometrie worden de andere goniometrische basisformules verder behandeld. )
Constructie van de naar A voortschrijdende driehoeken
In de rechthoekige Δ ABC zijn de sinus en de cosinus van hoek α nu met eenvoudige goniometrie vast te stellen, zoals dat in de volgende, omkaderde berekening is uitgevoerd.
Als in Δ ABC de loodlijn CD op zijde AB wordt neergelaten,
dan is Δ BCD gelijkvormig aan Δ ABC, aangezien hoek α gemeenschappelijk is en beide
Δ Δ een hoek van 90 0 bevatten. Dit wordt aldus genoteerd: Δ BCD ~ Δ ABC.
Vervolgens kunnen nu de zijden BD en CD
worden afgeleid, namelijk:
Als nu de lijn DE wordt getrokken, parallel aan BC , dan is ook Δ CDE ~ Δ ABC, en geldt het volgende:
Het zal duidelijk zijn, dat – als verdere Δ Δ worden geconstrueerd – dit uiteindelijk zal eindigen in A. Hoe dit in zijn werk gaat, wordt in de volgende stappen uiteengezet.
Stapsgewijs naar limiet 0
Als nu de loodlijn EF wordt getrokken, dan is ook Δ DEF ~ Δ ABC , en geldt het volgende:
Deze procedure van steeds kleiner wordende Δ Δ kan worden voortgezet totdat de uiterste punt A van Δ ABC wordt bereikt, of met andere woorden:
- In hoekpunt A wordt de limiet = 0 bereikt.
In de bijgaande afleidingen worden van de voortschrijdende Δ Δ de zijden vastgesteld.
( Omwille van de eenvoud, houdt het construeren en berekenen van de opeenvolgende Δ Δ bij Δ JK op )
|
Grafische voorstelling
Bij de reeks berekeningen, lopend tot 6 • sin 100α , wordt het duidelijk, dat ná 6 • sin 50α de getalwaarde naar 0 gaat naderen, of met andere woorden:
- Bij 0 wordt de limiet bereikt van 6 • sin nα
Uit de onderstaande berekeningen kan worden vastgesteld, dat deze limiet al ongeveer bij 6 • sin 100α praktisch bereikt wordt.
( In dit kader verdient het echter wel de aandacht, te beseffen, dat de gangbare elektronische rekenmachines niet in staat zijn om zeer kleine getallen nog met de vereiste nauwkeurigheid weer te geven. )
In de bijbehorende grafiek is het naderen tot de limiet = 0 nog beter te volgen.
Terecht werd gesteld, dat de limiet al bijna wordt bereikt bij 6 • sin 100α. In theorie is dit echter nog niet het geval. Hoe dat dan werkelijk is, zal hierna in Algemene geldigheid worden uiteengezet.
Algemene geldigheid
In het begin werd aangegeven, dat voor het inzicht in het verloop van het proces, getallen voor de zijden BC en AC nodig waren. Bij de gekozen getalwaarden voor de zijden BC = 6 en AC = 8, blijkt dat ná 6 • sin 50α de getalwaarde naar 0 gaat naderen.
Bij keuze van andere getalwaarden had dit naderen tot 0 ook plaats gevonden, alleen eerder of later dan bij BC • sin 50α .
Het naderen van de limiet 0 is dus voor elke aanliggende rechthoekszijde x - met de bijbehorende getalwaarde - van kracht.
Verder kan worden gesteld, dat de limiet 0 voor elke aanliggende rechthoekszijde x theoretisch pas wordt bereikt als
n uiteindelijk ONEINDIG is (∞) geworden.
Dit wordt aldus genoteerd:
Op het moment dat n =∞ , wordt dan gelijkertijd voor de - van de oorspronkelijke rechthoekige Δ ABC afgeleide Δ - de EINDIGHEID bereikt.
Nawoord
- Het blijkt, dat in een rechthoekige Δ , een reeks gelijkvormige Δ Δ kunnen worden aangebracht, die vanuit een hoekpunt - in dit geval hoekpunt B met de hoek α - steeds kunnen worden uitgebreid.
- Uit het onderzoek blijkt verder, dat de zijden x van de gelijkvormige Δ Δ steeds een functie van sinα zijn. Dit wordt aldus geschreven:
- x = f ( sin nα ).
- Bij verdere uitbreiding van de rechthoekige Δ Δ zullen deze uiteindelijk in het tegenoverliggende hoekpunt A eindigen.
- Op dat moment wordt de limiet 0 bereikt - uitgedrukt in voorgaande formule in het gele kader - en houdt de van de oorspronkelijke Δ ABC afgeleide Δ op te bestaan.