Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Gebruiker:Franciscus/kladblok: verschil tussen versies
Geen bewerkingssamenvatting |
Geen bewerkingssamenvatting |
||
Regel 75: | Regel 75: | ||
=Rekenkunde ( 3 )= | =Rekenkunde ( 3 )= | ||
In [[Rekenkunde ( 1 )]] en [[Rekenkunde ( 2 )|( 2 )]] zijn '''Optellen''', '''Aftrekken''', '''Vermenigvuldigen''' en '''Delen''' behandeld. In Rekenkunde ( 3 ) worden de bewerkingen '''Machtsverheffen''' en '''Worteltrekken''' besproken. | In [[Rekenkunde ( 1 )]] en [[Rekenkunde ( 2 )|( 2 )]] zijn '''Optellen''', '''Aftrekken''', '''Vermenigvuldigen''' en '''Delen''' behandeld. In Rekenkunde ( 3 ) worden de bewerkingen '''Machtsverheffen''' en '''Worteltrekken''' besproken. |
Versie van 26 jan 2010 11:40
Deze pagina gebruik ik om nieuwe artikelen even op te bergen en te bewerken, vóórdat ik ze als bijdrage op Wikisage zet. Ook kan ik hier enkele geheugensteuntjes kwijt.
Franciscus 4 feb 2009 14:55 (UTC)
Franciscus 20 jul 2009 13:33 (UTC)
- sin α = BC / AB = ½ AB / AB = 0,5
- Voor zijde AC wordt de stelling van Pythagoras toegepast, en wel als volgt:
- AC = √ ( AB ) 2 – ( BC ) 2 = √ ( AB ) 2 – ( ½ AB ) 2 = √ ¾ (AB) 2 = ½ AB√3
- Hieruit volgt dan :
- cos α = AC / AB = ½ AB √ 3 / AB = ½ √ 3 ( = 8,66 )
- en :
- tg α = BC / AC = ½ AB / ½ AB√3 = 1/3 . √3 = 0,577
Quotiënt | Φ |
---|---|
1 : 1 | 1 |
2 : 1 | 2 |
3 : 2 | 1,5 |
5 : 3 | 1,67 |
8 : 5 | 1,6 |
13 : 8 | 1.62500 |
89 : 55 | 1,6181818 |
610 : 377 | 1,61537135 |
4181 : 2584 | 1,61803405 |
28657 : 17711 | 1,61803399 |
196418 : 121393 | 1,618033989 |
Rekenkunde ( 3 )
In Rekenkunde ( 1 ) en ( 2 ) zijn Optellen, Aftrekken, Vermenigvuldigen en Delen behandeld. In Rekenkunde ( 3 ) worden de bewerkingen Machtsverheffen en Worteltrekken besproken.
Machtsverheffen
Bij het machtsverheffen wordt een getal één, twee of meer keren met zichzelf vermenigvuldigd.
- Voorbeeld 1
Als het getal 5 een drietal keren met zichzelf wordt vermenigvuldigd, dus:
|
Optellen en aftrekken van machten
Als machten moeten worden opgeteld of van elkaar worden afgetrokken, dan moeten de machten eerst worden uitgewerkt om daarna verder bewerkt te kunnen worden.
- Voorbeeld 2
3 3 + 3 2 = 3 • 3 • 3 + 3 • 3 = 36 |
Vermenigvuldigen en delen van machten
Als machten moeten worden vermenigvuldigd met andere machten of worden gedeeld door andere machten die hetzelfde grondtal hebben, dan moeten de exponenten van die machten bij elkaar worden opgeteld of afgetrokken.
- Voorbeeld 3
5 3• 5 4 = 5 3 + 2 = 5 5 = 3125 |
en ook:
5 4: 5 3 = 5 4 - 1 = 5 3 = 125 |
Een heel bijzondere deling van machten is de volgende:
5 1: 5 1 = 5 1 - 1 = 5 0 = 1 |
Voor elk ander getal dan 5 dus:
x 1: x 1 = x 1 - 1 = x 0 = 1 |
Voor alle getallen dus:
x n: x n = x n - n = x 0 = 1 |
Machtsverheffen van machten
Als machten zelf tot een macht verheven moeten worden, dan worden de exponenten met elkaar vermenigvuldigd.
- Voorbeeld 4
( 8 3 ) 2 = 8 3• 8 3 = 8 6 = 262144 |
Worteltrekken
Bij het machtsverheffen wordt een getal met zichzelf vermenigvuldigd. Bij het worteltrekken gebeurt deze handeling in omgekeerde volgorde.
- Voorbeeld 5
Als 5 2 = 25, dan wordt door worteltrekken het oorspronkelijke grondtal zonder exponent verkregen,
|
Aangezien dit de tweedemachtswortel of de vierkantswortel uit 25 is, zou eigenlijk boven het wortelteken een 2 gezet moet worden. Dit wordt in de praktijk echter nooit uitgevoerd. Zou het een hogere machtswortel betreffen, dan moet dit wel gebeuren.
Deze wortelvormen zullen hier niet behandeld worden.
Wortels uit grote getallen
- Voorbeeld 6
Uit:
7 2 = 49 volgt: √ 49 = 7 |
Dit is betrekkelijk eenvoudig en geeft geen moeilijkheden. Als de getallen niet al te groot zijn, is het nog goed doenlijk de wortel uit dat getal te trekken. De vorm:
√ 625 = 25 |
levert voor de meeste mensen nog geen problemen op.
Anders wordt het, als de wortel uit een groot getal als 6561 moet worden getrokken. Hier moet dan een bijzondere manier worden toegepast om achter de uitkomst te komen.
Om de vorm √ 6561 op te lossen, wordt als volgt te werk gegaan:
- Verdeel het getal vanaf de rechterkant in groepen van 2 cijfers, dus: 65 | 61
- Zoek het grootste getal, dat in het kwadraat zó dicht mogelijk bij het linker getal ligt,dus: 8 • 8 = 64. De 8 wordt als eerste getal van de uitkomst genoteerd.
- De verschil tussen 65 en 64 - de rest dus - is 1
- Plaats die 1 vóór de tweede groep cijfers, dus: 161
- Tel hierna de cijfers van de eerste bewerking op, dus: 8 + 8 = 16
- Zoek bij dit getal het cijfer - in dit geval 1 - dat vermenigvuldigd met zichzelf - zó dicht mogelijk bij het getal 161 ligt.
- Het gevonden cijfer - de 1 dus - wordt als tweede getal van de uitkomst genoteerd
- De uitkomst van de berekening blijkt te zijn: √ 6561 = 81
|
Bij nog grotere getallen, gaat de berekening nog even door.
- Voorbeeld 7
√ 4338889:
- Getal verdelen in groepen van twee cijfers, dus 4 | 33| 88 | 89
- De verdere bewerkingen als in Voorbeeld 6
- Bij de 2e bewerking aangekomen, blijkt het getal 33 kleiner te zijn, dan de kleinst mogelijke vermenigvuldiging ( 41 • 1 ). Dit gaat dus 0 keer. Om verder te kunnen, moet hiervoor de 0 achter de 4 worden geplaatst en het getal 88 naar beneden gehaald.
- De uitkomst van de berekening is dus: √ 4338889 = 2083
|
Bij de behandeling van de breuken en tiendelige breuken zullen ook wortels getrokken worden uit getallen die geen kwadraat van een geheel getal vormen, bijvoorbeeld √ 51.
Vermenigvuldigen van wortels
Bij het vermenigvuldigen van wortels wordt soms een vereenvoudigde schrijfwijze toegepast.
- Voorbeeld 8
√ 9 • √ 36 = √ ( 9 • 36 ) = √ 324 = 18 |
Rekenkunde ( 4 )
In Rekenkunde ( 1 ), ( 2 ) en ( 3 ) zijn de diverse basisbegrippen van de Rekenkunde behandeld.
Bij de diverse bewerkingen die daar aan de orde kwamen, moet - als ze in combinatie met elkaar optreden - altijd een bepaalde volgorde worden aangehouden. Wordt dit niet gedaan, dan ontstaan fouten in de bewerkingen.
Volgorde
De volgorde van de diverse bewerkingen moet altijd als volgt verlopen:
|
- Voorbeeld 1
12 3 • 3 : 9 - √ 36 + 5 - 3 =
|
Hulpmiddelen
Als van de normale volgorde moet worden afgeweken, dan worden soms hulpmiddelen gebruikt, en wel:
|
- Bij gebruik van deze hulpmiddelen wordt eerst uitegerekend wat binnen de haakjes staat. Daarna wordt vastgesteld, wat binnen de accoladen staat, en als laatste wordt nagegaan wat binnen de rechte haakjes staat.
- Nadat de berekeningen zijn gemaakt, worden achtereenvolgens de haakjes, de accoladen en de rechte haakjes weggelaten.
- Als de hulpmiddelen zijn verdwenen, wordt de berekening in de normale volgorde voortgezet.
- Voorbeeld 2
[ { ( 28 - 16 ) • 3 - ( 12 + 4 ) : 4 } • √ 25 - 10 ]:{( 4 + 3 )• 2 3 - 6 } =
|