Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Mark Jacobson
Mark Zachary Jacobson (geboren 1965) is hoogleraar civil and environmental engineering aan de Stanford University (VS) en directeur van het Atmosphere en Energy Program daar. Jacobson ontwikkelt computermodellen over de effecten van de verschillende energietechnologieën en hun uitstoot op luchtvervuiling en klimaatverandering. Volgens Jacobson is een snelle overgang naar schone hernieuwbare energie vereist om de mogelijke versnelling van de opwarming van de aarde, zoals het verdwijnen van de Noordpoolijs, te verminderen. Deze overgang zal ook 2,5-3 miljoen sterfgevallen wereldwijd elk jaar in verband met luchtvervuiling elimineren, en de verstoring in verband met fossiele brandstoftekorten verminderen.[1]
Jacobson stelt dat wind, water en zonne-energie kosten-effectief kan worden opgeschaald om te voldoen aan onze energiebehoefte en om de menselijke samenleving te bevrijden van de afhankelijkheid van zowel fossiele brandstoffen als kernenergie. In 2009 hebben Jacobson en Mark A. Delucchi een plan in Scientific American gepubliceerd om de hele planeet te voorzien van duurzame energie.[2] Het artikel is gericht op een aantal zaken, zoals de wereldwijd nodige ruimte voor windparken, de beschikbaarheid van schaarse materialen die nodig zijn voor de productie van nieuwe systemen, het vermogen om betrouwbare energie te produceren op aanvraag, en de gemiddelde kosten per kilowattuur. Een meer gedetailleerde en actuele technische analyse is gepubliceerd als een tweedelig artikel in het tijdschrift Energy Policy.[3]
Analyse
Omdat het tientallen jaren duurt voor nieuwe technologieën volledig toegepast worden, worden alleen technologieën beschouwd die minstens in proefprojecten aangetoond zijn,
- die kunnen worden opgeschaald als onderdeel van een wereldwijd energie-systeem zonder verdere belangrijke technologische ontwikkeling,
- die praktisch geen uitstoot van broeikasgassen en luchtverontreinigende stoffen per eenheid product hebben over de gehele 'levenscyclus' van het systeem,
- die een lage impact op fauna, watervervuiling, en land hebben,
- die geen significante afvalverwerking of daarmee samenhangende terrorisme risico's hebben, en
- die gebaseerd zijn op primaire middelen die voor onbepaalde tijd worden verlengd of recyclebaar zijn.
Dus niet alleen kernenergie, maar alle fossiele brandstof, ook kolen met kooldioxide afvang, en zelfs biobrandstof wordt niet beschouwd omdat de bereiding teveel luchtvervuiling veroorzaakt.[4] De analyse is beperkt tot energievoorziening; het gebruik van kolen in hoogovens voor staalproductie en aardolie als grondstof voor asphalt, smeermiddellen en petrochemische producten komt niet ter sprake.
Jacobson en Delucchi analyseren alleen WWZ (wind-water-zon) technologie die elektriciteit opwekt, waarmee zonodig elektrolitisch waterstof geproduceerd wordt voor transport en warmte. Lichte transport middellen zijn voornamelijk batterij-elektrische voertuigen (BEV), zwaar transport gaat met waterstof brandstofcel voertuigen (HFCV) en hybride BEV-HFCV met samengeperst waterstof. Schepen gebruiken hybride batterij-waterstof brandstofcel systemen, en vliegtuigen vloeibaar waterstof. Water en lucht verwarming van gebouwen met behulp van WWS kan met warmtepompen die warmte onttrekken aan grond en buitenlucht, en met elektrische weerstand kachels. Energie voor hoge temperatuur industriële processen wordt geleverd door verbranding van elektrolytische waterstof.
Het vermogen dat nu nodig is om te voldoen aan al het wereldwijd eind-gebruik is ongeveer 12,5 terawatt (TW) (verliezen in de productie en transmissie niet meegerekend). De geleverde elektriciteit is iets meer dan 2 TW van het totale eindgebruik. De EIA[5] voorziet dat in het jaar 2030 de wereld bijna 17 TW nodig heeft in het eindgebruik van energie. Ze verwachten ook dat de verdeling in termen van primaire energie in 2030 vergelijkbaar zal zijn met nu - sterk afhankelijk van fossiele brandstoffen, en dus vrijwel zeker onhoudbaar.
Een WWZ wereld zal ongeveer 30% minder vermogen in het eindgebruik nodig hebben. Elektromotoren zijn bijv. veel efficiënter dan motoren die brandstof gebruiken. Verwarming van gebouwen met elektrische warmtepompen is efficiënter dan met brandstof. De energiebehoefte in 2030 zal minder dan 12 TW-jaar zijn. Wind en zon kunnen elk jaar vele malen meer opwekken op geschikte plaatsen, maar niet continu. Voor een elke minuut beschikbare elektriciteitsvoorziening is ook waterkracht nodig en geothermische centrales hoewel die procentueel weinig bijdragen. De energievoorziening zou er dan als volgt uit kunnen zien.
- 50% met 3,8 miljoen 5MW windturbines
- 20% met 49 duizend 300 MW geconcentreerd zonlicht centrales
- 14% met 40 duizend 300 MW PV centrales
- 6% met 1,7 miljard 3 kW PV systemen op daken
- 4% met 5350 100 MW geothermische centrales
- 4% met 900 1300 MW waterkracht centrales
- 1% met 720 duizend 0,75 MW golfsystemen
- 1% met 490 duizend 1MW getijde turbines
Dit hele WWZ systeem beslaat 1% van het landoppervlak van de wereld. Er zijn waarschijnlijk voldoende grondstoffen voor WWZ. Sommige zeldzame materialen, zoals neodymium (in elektrische motoren en generatoren), platina (in brandstofcellen) en lithium (in batterijen), moeten worden gerecycled of eventueel vervangen door minder schaarse materialen, tenzij aanvullende middelen gevonden worden. De kosten van recycling of vervanging van neodymium of platina is waarschijnlijk niet van merkbare invloed op de economie van het WWS systeem, maar de kosten van grootschalige recycling van lithium accu's is onbekend.
Wordt vervolgd
Referenties
- º A Path to Sustainable Energy by 2030 (PDF). Scientific American 301 (5): 58–65.
- º A Plan to Power 100 Percent of the Planet With Renewables: Wind, water and solar technologies can provide 100 percent of the world's energy, eliminating all fossil fuels. Here's how, Jacobson, M. Z., and Delucchi, M. A., Scientific American, November 2009
- º Mark Z. Jacobson and Mark A. Delucchi (30 December 2010). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials, Part II: Reliability, system and transmission costs, and policies.. Energy Policy. Elsevier Ltd.
- º Jacobson, M.Z., 2007. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environmental Science and TechnologyI 41, 4150–4157.
- º Energy Information Administration, International Energy Outlook 2008, DOE/EIA-0484(2008). U.S. Department of Energy, Washington, D.C.