Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Mark Z. Jacobson
Mark Zachary Jacobson (geboren 1965) is hoogleraar civiele en milieutechniek aan de Stanford University en directeur van het Atmosphere/Energy Program.[1] Hij is ook medeoprichter van de non-profitorganisatie Solutions Project.
Overzicht
Jacobson streefde naar "een beter begrip van de problemen van de luchtvervuiling en de opwarming van de aarde en het ontwikkelen van grootschalige schone, hernieuwbare energie oplossingen daarvoor".[2] Hij heeft computermodellen ontwikkeld[3] om de effecten van fossiele brandstoffen, biobrandstoffen en verbranding van biomassa op luchtvervuiling te bestuderen op weer en klimaat. Met deze modellen onderzocht Jacobson de impact van antropogene deeltjes (zwarte en bruine koolstof) op de gezondheid en het klimaat. Hij presenteerde dergelijke deeltjes als de op één na belangrijkste oorzaak van de opwarming van de aarde, na koolstofdioxide.[4] Vanwege hun sterke gevolgen voor de gezondheid en hun korte tijd in in de lucht, heeft hij ook de hypothese geopperd dat het verminderen van hun uitstoot mogelijk de gezondheid van mensen kan verbeteren en de opwarming van de aarde snel kan vertragen.[5]
In een Scientific American artikel uit 2009 stelden Jacobson en Mark Delucchi voor dat de wereld zou moeten overstappen op 100% schone, hernieuwbare energie, namelijk wind-, water- en zonne-energie, voor alle energie sectoren.[6] Hij besprak en promootte [7][8][9] de conversie van wereldwijde energie-infrastructuur naar "100% wind, water en zonlicht (WWS) voor alle doeleinden" in veel interviews.[10] Jacobsons onderzoek uit 2015 over de overgang van de 50 staten naar WWS werd aangehaald als de wetenschappelijke basis in House Resolution 540 (2015)[11] en in 2015 NY State Senate Bill S5527 van New York over hernieuwbare energie.[12] De Green New Deal lijkt compatibel met de studiebeurs van Jacobson.[13]
De oplossingen voor schone energie van Jacobson sluiten kernenergie, koolstofafvang en bio-energie uit,[14] wat aanleiding gaf tot een reactie van voorstanders van deze technologieën in de vorm van peer-reviewed brieven en tijdschriftartikelen.[15] [16] Hij heeft peer-reviewed reacties op deze critici gepubliceerd.[17] [18] In 2017 leidde deze controverse tot rechtszaken die in 2024 nog voortduurden.
Jacobson heeft zijn eigen energieneutrale huis gebouwd dat op hernieuwbare energie draait.[19] Hij was ook getuige-deskundige in Held v. Montana, het eerste klimaatproces in de Amerikaanse geschiedenis.[20]
Onderzoek
Jacobson heeft gepubliceerd over de rol van zwarte koolstof en andere chemische componenten in aërosols op het mondiale en regionale klimaat.[21][22]
Jacobson pleit voor een snelle transitie naar 100% hernieuwbare energie om klimaatverandering, schade door luchtvervuiling en energieveiligheid problemen te beperken. Jacobson was in 2011 medeoprichter van de non-profitorganisatie Solutions Project, samen met Marco Krapels, Mark Ruffalo en Josh Fox. Het Solutions Project is gestart om wetenschap, bedrijfsleven en cultuur te combineren in een poging het publiek en beleidsmakers voor te lichten over het vermogen van Amerikaanse staten en gemeenschappen om over te schakelen naar een "100% hernieuwbare wereld".
Roet en aerosol
Jacobson begon als PhD-student aan de UCLA onder Richard P. Turco in 1990 met de ontwikkeling van een computermodel, algoritmen voor wat nu GATOR-GCMOM wordt genoemd (Gas, Aerosol, Transport, Radiation, Algemene circulatie-, mesoschaal- en oceaanmodel).[3] Dit model simuleert luchtvervuiling, het weer en het klimaat van lokaal tot mondiaal niveau. Zhang (2008, pp. 2901, 2902) noemt het model van Jacobson "het eerste volledig gekoppelde online model in de geschiedenis dat rekening houdt met alle belangrijke feedbacks tussen belangrijke atmosferische processen, gebaseerd op eerste principes."[23]
Verschillende van de individuele computercodeoplossers die Jacobson voor GATOR-GCMOM heeft ontwikkeld, omvatten de gewone differentiaalvergelijkingsoplossers voor gas- en waterchemie SMVGEAR[24] en SMVGEAR II,[25][26] naast een hele reeks andere gerelateerde en verschillende modules,[27][28][29][30][31][32][33][34] Het GATOR-GCMOM-model heeft deze processen geïntegreerd en is gedurende tientallen jaren geëvolueerd.[35][36][37][38][39][40][41][42]
Een van de belangrijkste onderzoeksgebieden waaraan Jacobson, met behulp van GATOR-GCMOM, heeft bijgedragen, is precies hoeveel diffuse troposferische zwarte koolstof uit fossiele brandstoffen, biobrandstoffen en biomassa verbranding, invloed heeft op het klimaat. In tegenstelling tot broeikasgassen absorbeert zwarte koolstof zonnestraling. Vervolgens wordt de zonne-energie omgezet in warmte, die opnieuw wordt uitgestoten in de atmosfeer. Zonder een dergelijke absorptie zou een groot deel van het zonlicht mogelijk terug de ruimte in worden gereflecteerd, omdat het op een meer reflecterend oppervlak zou zijn terechtgekomen. Daarom beïnvloedt roet als geheel het albedo van de planeet, een eenheid van reflectie. Aan de andere kant verwarmen broeikasgassen de atmosfeer door thermische infraroodstraling op te vangen die door het aardoppervlak wordt uitgezonden.[41][43]
Jacobson ontdekte dat naarmate roetdeeltjes in de lucht ouder worden, ze groter worden als gevolg van condensatie door gassen en botsing/coalescentie met andere deeltjes. Hij ontdekte verder dat wanneer een roetdeeltje een dergelijke coating kreeg, er meer zonlicht in de deeltjes binnendringt, rondstuitert en uiteindelijk wordt geabsorbeerd door de zwarte koolstof. Op wereldschaal kan dit resulteren in tweemaal zoveel verhitting door zwarte koolstof als door ongecoate deeltjes. Na gedetailleerde berekeningen concludeerde hij dat zwarte koolstof de op een na belangrijkste oorzaak van de opwarming van de aarde zou kunnen zijn in termen van stralingsforcering.[44] Jacobson ontdekte verder dat roet van dieselmotoren, kolencentrales en het verbranden van hout een “belangrijke oorzaak is van het snelle smelten van het zee-ijs in de Noordpool.
Jacobson's verfijning van de opwarmende gevolgen van roet en zijn conclusie dat zwarte koolstof de tweede belangrijkste oorzaak van de opwarming van de aarde zou kunnen zijn in termen van stralingsforcering, werden bevestigd in het uitgebreide overzicht van Bond et al.[45] Voor dit oeuvre ontving hij de Henry G. Houghton Award[21] van de American Meteorological Society in 2005 en de American Geophysical Union Ascent Award in 2013.
Jacobson heeft ook onafhankelijk het werk van onderzoekers van de Wereldgezondheidsorganisatie gemodelleerd en bevestigd, die eveneens schatten dat roet/deeltjes geproduceerd door de verbranding van fossiele brandstoffen en biobrandstoffen elk jaar meer dan 1,5 miljoen voortijdige sterfgevallen kunnen veroorzaken als gevolg van ziekten zoals aandoeningen aan de luchtwegen en hartziekten. en astma. Deze sterfgevallen komen vooral voor in de ontwikkelingslanden, waar hout, dierlijke mest, kerosine en steenkool worden gebruikt om te koken.[41]
Vanwege de korte atmosferische levensduur van zwarte koolstof concludeerde Jacobson in 2002 dat het beheersen van roet de snelste manier is om de opwarming van de aarde onder controle te krijgen en dat het eveneens de menselijke gezondheid zal verbeteren.[46] Hij waarschuwde echter dat het beheersen van koolstofdioxide, de belangrijkste oorzaak van de opwarming van de aarde, absoluut noodzakelijk was om de opwarming te stoppen.
100% hernieuwbare energie
Jacobson heeft artikelen gepubliceerd over de transitie naar 100% hernieuwbare energiesystemen, inclusief de netintegratie van hernieuwbare energie. Hij heeft geconcludeerd dat wind-, water- en zonne-energie (WWS) op kosteneffectieve manieren kan worden opgeschaald om aan de mondiale energievraag in alle energiesectoren te voldoen. In 2009 publiceerden Jacobson en Mark A. Delucchi "A Path to Sustainable Energy by 2030" in Scientific American.[47] Het artikel ging in op verschillende kwesties die verband houden met de transitie naar 100% WWS, zoals de energie die nodig is in een 100% elektrische wereld, de wereldwijde ruimtelijke voetafdruk van windparken, de beschikbaarheid van schaarse materialen die nodig zijn om nieuwe systemen te vervaardigen en de mogelijkheid om betrouwbaar energie op aanvraag te produceren. Jacobson heeft dit artikel uit 2009 in de loop van de jaren bijgewerkt en uitgebreid, inclusief een tweedelig artikel in het tijdschrift Energy Policy in 2010.[48] Jacobson en zijn collega schatten dat 3,8 miljoen windturbines met een grootte van 5 MW, 49.000 centrales van 300 MW geconcentreerde zonne-energie, 40.000 zon-PV energiecentrales van 300 MW, 1,7 miljard PV-systemen op daken van 3 kW, 5350 geothermische energie-centrales van 100 MW en ongeveer 270 nieuwe waterkrachtcentrales van 1300 MW nodig zijn. Voor dit alles zou ongeveer 1% van het landoppervlak in de wereld nodig zijn.
Jacobson en zijn collega's publiceerden vervolgens artikelen over de transitie van drie staten (VS) naar 100% hernieuwbare/WWS-energie tegen 2050.[49][50][51] In 2015 was Jacobson de hoofdauteur van twee peer-reviewed artikelen, waarvan er één de haalbaarheid onderzocht van de overgang van elk van de 50 Verenigde Staten naar een energiesysteem dat voor 100% uitsluitend wordt aangedreven door wind, water en zonlicht (WWS), en de andere dat een voorgestelde methode leverde om het netbetrouwbaarheidsprobleem met een hoog aandeel intermitterende bronnen op te lossen.[52] In 2016 selecteerde de redactie van PNAS de netintegratiestudie van Jacobson en zijn collega's als beste artikel in de categorie "Toegepaste biologische, landbouw- en milieuwetenschappen" en kende hem een Cozzarelli-prijs toe.[53]
Jacobson heeft ook artikelen gepubliceerd over transitie 139[54] en 143[55] landen, evenals 54 steden[56] en 74 grootstedelijke gebieden[57] tot 100% WWS hernieuwbare energie voor alle doeleinden. Voor zijn werk aan het oplossen van grootschalige luchtvervuiling en klimaatproblemen ontving Jacobson in 2018 de Judi Friedman Lifetime Achievement Award.[58]
Jacobson is mede-oprichter van de non-profitorganisatie The Solutions Project, samen met Marco Krapels, Mark Ruffalo en Josh Fox. Deze organisatie "helpt het publiek voor te lichten over op wetenschap gebaseerde routekaarten voor de transitie naar 100% hernieuwbare energie en een transitie naar een 100% hernieuwbare wereld mogelijk te maken".[59]
Meningen over kernenergie
Jacobson stelt dat als de Verenigde Staten de opwarming van de aarde, de luchtvervuiling en de energie-instabiliteit willen terugdringen, ze alleen in de beste energieopties moeten investeren, en dat kernenergie daar niet één van is.[51] Om zijn bewering te staven, heeft Jacobson in 2009 een analyse gepresenteerd die bedoeld was om beleidsmakers te informeren over welke energiebronnen het beste zijn voor het oplossen van de problemen op het gebied van luchtvervuiling, klimaat en energieveiligheid waarmee de wereld wordt geconfronteerd.[60] Hij heeft deze analyse bijgewerkt in zijn leerboek uit 2020.[61]
Die analyse hield rekening met een aantal emissiebronnen die niet in eerdere analyses waren opgenomen. De primaire emissies als gevolg van kernenergie worden ‘emissies met opportuniteitskosten’ genoemd. Dit zijn de onnodige emissies als gevolg van het lange tijdsverloop tussen de planning en exploitatie van een kerncentrale (10 tot 19 jaar) ten opzichte van bijvoorbeeld een wind- of zonnepark (2 tot 5 jaar). Van de totale geschatte emissies van kernenergie in het onderzoek uit 2009 (68–180,1 g/kWh) was 59–106 g/kWh te wijten aan emissies met alternatieve kosten. Het grootste deel van de rest (9-70 g/kWh) was te wijten aan emissies gedurende de levenscyclus, en een klein deel (0-4,1 g/kWh) was te wijten aan het risico van koolstofemissies die gepaard gaan met het platbranden van steden als gevolg van een kernoorlog die werd bevorderd. door de uitbreiding van kernenergie naar landen die dit voorheen niet hadden, en de daaropvolgende ontwikkeling van wapens in die landen. Jacobson bracht deze laatste veronderstelling naar voren tijdens een Ted talk Heeft de wereld kernenergie nodig? in 2010, waarbij hij het debat leidde naar ontkenning.[62]
Net als zijn PhD-adviseur Richard P. Turco, die met name de term ‘nucleaire winter bedacht’, heeft Jacobson een vergelijkbare benadering gevolgd bij het berekenen van de hypothetische effecten van nucleaire oorlogen op het klimaat, maar heeft dit verder uitgebreid tot een analyse die bedoeld is om beleidsmakers te informeren over welke energiebronnen ze vanaf 2009 moeten ondersteunen.[63] De analyses van Jacobson suggereren dat "kernenergie resulteert in tot 25 keer meer koolstofemissies per eenheid energie dan windenergie".
Deze analyse is controversieel. Jacobson kwam tot deze conclusie van "25 keer meer CO2-uitstoot dan wind, per eenheid opgewekte energie" (68–180,1 g/kWh), door specifiek in te gaan op enkele concepten die zeer omstreden zijn.[64][63] Deze omvatten, maar zijn niet beperkt tot, de suggestie dat de emissies die verband houden met civiele kernenergie, in de bovengrens, het risico zouden moeten omvatten van koolstofemissies die verband houden met het platbranden van steden als gevolg van een kernoorlog, geholpen door de uitbreiding van kernenergie en wapens naar landen die deze voorheen niet hadden. Een veronderstelling die Jacobsons debatterende tegenstander op soortgelijke wijze naar voren bracht tijdens de Ted talk Heeft de wereld kernenergie nodig? in 2010, waarbij Jacobson het debat leidde naar ontkenning.[65] Jacobson gaat ervan uit dat aan de hoge kant (180,1 g/kWh) 4,1 g/kWh te wijten is aan een vorm van door kernenergie veroorzaakte verbranding die eens in de dertig jaar zal voorkomen. Aan de lage kant is 0 g/kWh het gevolg van door kernenergie veroorzaakte verbranding. In reactie op een commentaar op zijn werk in het Journal Environmental Science and Technology in 2013, heeft James Hansen Jacobsons analyse over dit onderwerp van de uitstoot van broeikasgassen gekarakteriseerd als "gebrek aan geloofwaardigheid" en beschouwt Jacobsons andere standpunt over extra 'alternatieve kosten'-emissies eveneens als 'twijfelachtig'. Omdat de basis van Hansens ongeloof gebaseerd was op Franse ervaring, die ~80% van het elektriciteitsnet in 15 jaar koolstofarm maakte, werden in de periode van 15 jaar 56 reactoren voltooid, waardoor het feit dat, afhankelijk van het bestaan van gevestigde regelgeverszekerheid en politieke omstandigheden, kernenergiefaciliteiten versneld zijn door de vergunnings-/planningsfase en daarom de elektriciteitsnetten snel koolstofvrij hebben gemaakt.[66]
Het Intergouvernementeel Panel over Klimaatverandering (IPCC) beschouwt de methodologie van Warner en Heath van Yale University, die wordt gebruikt om de levenscyclus-broeikasgasemissies van energiebronnen te bepalen, als de meest geloofwaardige , waarin wordt gerapporteerd dat het denkbare bereik van totale emissiecijfers van kernenergie tijdens de levenscyclus tussen 4 en 110 g/kWh ligt, met een specifieke mediaanwaarde van 12 g/kWh, wordt beschouwd als de sterkst ondersteunde en 11 g/kWh voor wind.[67] Terwijl de beperkte levenscycluscijfers van Jacobson, van 9-70 g/kWh, binnen dit IPCC-bereik vallen. Het IPCC houdt echter geen rekening met de ‘opportunity cost’-emissies van Jacobson op welke energiebron dan ook. Het IPCC heeft geen gedetailleerde verklaring gegeven voor het niet meenemen van de ‘opportunitykosten’ van Jacobson. Afgezien van de tijd die nodig is voor de planning, financiering, vergunningverlening en bouw van een energiecentrale, hangt voor elke energiebron die kan worden geanalyseerd, de tijd die nodig is, en dus ook de ‘opportuniteitskosten’ van Jacobson, ook af van politieke factoren, bijvoorbeeld hypothetische rechtszaken die de bouw kunnen vertragen en andere problemen die kunnen voortvloeien uit locatiespecifiek NIMBYISM. Het zijn de vertragings-/opportuniteitskosten van de CO2 emissies die het grootste deel uitmaken van het verschil tussen Jacobsons totale emissies voor kernenergie van 68–180,1 g/kWh en de emissies van het IPCC over de hele levenscyclus.
In 2012 was Jacobson co-auteur van een artikel waarin hij de gezondheidseffecten van de kernramp in Fukushima schatte. Het artikel voorspelde dat ongeveer 180 "kankergerelateerde morbiditeiten" uiteindelijk bij het publiek zouden voorkomen.[68][69]
Gezondheidsfysicus Kathryn Higley van Oregon State University schreef in 2012: "De methoden van het onderzoek waren solide en de schattingen waren redelijk, hoewel er nog steeds onzekerheid over bestaat. Maar gezien de hoeveelheid kanker die er al bestaat in de wereld, het zou heel moeilijk zijn om te bewijzen dat iemands kanker werd veroorzaakt door het incident in Fukushima Daiichi."Burton Richter, werkzaam op Stanford bij Jacobson, die het gebruik van het omstreden Lineair zonder drempel (LNT)-model in de krant analyseerde, verklaarde op soortgelijke wijze in zijn kritiek: "Het is een eersteklas baan en maakt gebruik van bronnen voor radioactiviteitsmetingen die nog niet eerder zijn gebruikt om een heel goed beeld te krijgen van de geografische verspreiding van straling, een heel goed idee". Richter merkte ook op: "Ik denk ook dat er te veel redactionele artikelen zijn over de kans op ongelukken bij Diablo Canyon, waardoor [Jacobsons] artikel een beetje klinkt als een anti-nucleair stuk in plaats van de zeer goede analyse die dat is het wel," en "Het lijkt duidelijk dat kernenergie, als we alleen rekening houden met de elektriciteit die door de centrale in Fukushima wordt opgewekt, veel minder schadelijk is voor de gezondheid dan steenkool en iets beter (sic) gas, zelfs als het ongeval erbij wordt betrokken. Als er in Japan nooit kernenergie was ingezet, zouden de gevolgen voor het publiek veel erger zijn geweest.[70][71]
Evaluaties van het koolstofvrij maken
Jacobson's '100% hernieuwbare wereld'-aanpak wordt ondersteund door publicaties van ten minste 17 internationale onderzoeksgroepen die vinden dat 100% hernieuwbare energiebronnen over de hele wereld mogelijk zijn tegen lage kosten. Het wordt ook ondersteund door de Global 100RE Strategy Group, een coalitie van 47 wetenschappers die 100% hernieuwbare energie ondersteunen om het klimaatprobleem op te lossen. Zijn werk komt ook overeen met de resultaten van een onderzoek van het Amerikaanse National Renewable Energy Laboratory (NREL), waaruit bleek dat een 100% schoon, hernieuwbaar Amerikaans elektriciteitsnet zonder verbrandingsturbines ongeveer 4,8 ¢/kWh zou kunnen kosten om het net stabiel te houden. Dit is minder dan de kosten van elektriciteit uit een nieuwe aardgascentrale. Zijn werk wordt verder ondersteund door een publicatie uit 2016 van Mark Cooper, die eerder de economie van kernenergie heeft geëvalueerd aan de Vermont Law School,[68] In 2016 publiceerde Cooper,[69] een vergelijking van de 100% WWS-routekaarten van Jacobson met voorstellen voor diepgaande decarbonisatie, waaronder kernenergie en fossiele brandstoffen met koolstofafvang. Cooper concludeerde dat het 100% WWS-traject het minst kost en dat “noch fossiele brandstoffen met CCS, noch kernenergie in het goedkoopste, koolstofarme portfolio terechtkomen.” Eerdere publicaties, van 2011 tot 2015, waarin met verschillende methodologieën verschillende strategieën werden geanalyseerd om tegen circa 2050 een mondiale nul- of koolstofarme economie te bereiken, meldden dat een aanpak op basis van alleen hernieuwbare energiebronnen "orde van grootte" duurder en moeilijker te realiseren zijn dan andere energiepaden die zijn beoordeeld.[72][73][71][74][75] De recentere onderzoeken, waaronder de NREL-studie, betwisten deze beweringen.
Kritiek op "100% hernieuwbaar" artikelen en rechtszaken
De duurzame energieoplossingen van Jacobson sluiten kernenergie, koolstofafvang en bio-energie uit.[14] Dit heeft geresulteerd in weerstand van sommige wetenschappers.[15] 21 onderzoekers publiceerden in 2017 kritiek op Jacobsons artikel "100% Renewable" over de Verenigde Staten.[16] Jacobson en zijn coauteurs publiceerden een reactie op het kritische artikel[17] en verzocht het tijdschrift en de auteurs ook om 'valse feitelijke beweringen' over modelfouten te corrigeren of het artikel in te trekken. Nadat beide hadden afgewezen, spande Jacobson in 2017 een rechtszaak aan tegen de Proceedings of the National Academy of Sciences en Christopher Clack als de hoofdauteur van het artikel voor smaad.[76] De critici van Jacobson omschreven de rechtszaak als een aanval op vrijheid van meningsuiting en wetenschappelijk onderzoek,[77] Jacobson was het echter niet eens met deze karakterisering.[78] Jacobson trok zijn rechtszaak in februari 2018 in,[77][79] twee dagen na een hoorzitting over de speciale motie van de beklaagden tot ontslag op grond van de D.C. Anti-SLAPP (Strategic Litigation Against Public Participation) Act.[78] Jacobson legde zijn intrekking als volgt uit: "Het werd duidelijk... dat het mogelijk is dat er jarenlang geen einde aan deze zaak kan komen."[78][77] In 2022 ging Jacobson in beroep tegen een bevel van de rechtbank aan hem om $ 428.000 aan juridische kosten te betalen die beklaagden in zijn rechtszaak hadden opgelopen voorafgaand aan zijn vrijwillige intrekking ervan.[80] In februari 2024 verloor Jacobson het beroep en moet hij de verdachten meer dan $ 500.000 aan juridische kosten betalen.[81] Op 26 juni 2022 beval de California Labour Commission Stanford University om bijna $ 70.000 aan Jacobson te betalen voor de juridische kosten die hij had gemaakt in de zaak Washington D.C. en reserveerde ze een beslissing over de schadeloosstelling van hem voor zijn resterende kosten.[80] Stanford, die had geweigerd namens Jacobson tussenbeide te komen, is tegen deze uitspraak in beroep gegaan.[80]
Jacobson was ook getuige-deskundige namens 16 jeugdeisers in Held v. Montana, het eerste klimaatproces in de Amerikaanse geschiedenis.[20] Jacobson getuigde dat de staat zou kunnen overstappen op hernieuwbare energie.[20] De rechter oordeelde in het voordeel van de jeugdige eisers.[20]
Publicaties
Boeken
- Jacobson, M. Z., Fundamentals of Atmospheric Modeling. Cambridge University Press, New York, 656 pp., 1999.
- Jacobson, M. Z., Atmospheric Pollution: History, Science, and Regulation, Cambridge University Press, New York, 399 pp., 2002.
- Jacobson, M. Z., Fundamentals of Atmospheric Modeling, Second Edition, Cambridge University Press, New York, 813 pp., 2005.
- Jacobson, M. Z., Air Pollution and Global Warming: History, Science, and Solutions, Cambridge University Press, New York, 2011.
- Jacobson, M.Z., 100% Clean, Renewable Energy and Storage for Everything, Cambridge University Press, New York, 427 pp., 2020.
- Jacobson, M.Z., No Miracles Needed: How Today's Technology Can Save Our Climate and Clean Our Air, Cambridge University Press, New York, 454 pp., 2023.
Selectie van artikelen
- Bond, T. C.; Doherty, S. J.; Fahey, D. W.; et al. (June 6, 2013). "Bounding the role of black carbon in the climate system: A scientific assessment". Journal of Geophysical Research: Atmospheres. 118 (11): 5380–5552. Bibcode:2013JGRD..118.5380B. doi:10.1002/JGRD.50171. ISSN 2169-897X. Wikidata Q55879806.
- Jacobson, Mark Z (February 1, 2001). "Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols". Nature. 409 (6821): 695–697. doi:10.1038/35055518. ISSN 1476-4687. PMID 11217854. Wikidata Q46131808.
- Jacobson, Mark Z (January 1, 2001). "Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols". Journal of Geophysical Research. 106 (D2): 1551–1568. Bibcode:2001JGR...106.1551J. doi:10.1029/2000JD900514. ISSN 0148-0227. Wikidata Q55981483.
- Streets, David G.; Jiang, Kejun; Hu, Xiulian; Sinton, Jonathan E.; Zhang, Xiao-Quan; Xu, Deying; Jacobson, Mark Z.; James E. Hansen (November 1, 2001). "Recent reductions in China's greenhouse gas emissions". Science. 294 (5548): 1835–1837. doi:10.1126/SCIENCE.1065226. ISSN 0036-8075. PMID 11729288. S2CID 2660371. Wikidata Q30666428.
- Jacobson, Mark Z (2001). "Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols". Journal of Geophysical Research. 106 (2): 1551–1568. Bibcode:2001JGR...106.1551J. doi:10.1029/2000JD900514.
- Jacobson, Mark Z (2002). "Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming". Journal of Geophysical Research. 107 (D19): 16–22. Bibcode:2002JGRD..107.4410J. doi:10.1029/2001JD001376.
- Jacobson, Mark Z; Colella, W. G.; Golden, D. M. (2005). "(2005) Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles". Science. 308 (5730): 1901–1905. Bibcode:2005Sci...308.1901J. doi:10.1126/science.1109157. PMID 15976300. S2CID 1859983.
- Jacobson, Mark Z; Archer, Christina L. (2005). "Evaluation of global wind power". Journal of Geophysical Research. 110 (D12): 16–22. Bibcode:2005JGRD..11012110A. doi:10.1029/2004JD005462.
- Jacobson, Mark Z (2009). "Review of solutions to global warming, air pollution, and energy security". Energy and Environmental Science. 2 (2): 148–173 [155]. Bibcode:2009GeCAS..73R.581J. CiteSeerX 10.1.1.180.4676. doi:10.1039/b809990c.
- Jacobson, Mark Z; Delucchi, Mark A. (2011). "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials". Energy Policy. 39 (3): 1154–1169. doi:10.1016/j.enpol.2010.11.040.
- Jacobson, Mark Z; Delucchi, Mark A. (2011). "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies". Energy Policy. 39 (3): 1170–1190. doi:10.1016/j.enpol.2010.11.045.
- Jacobson, Mark Z; Archer, Christina L. (2012). "Saturation wind power potential and its implications for wind energy". Proceedings of the National Academy of Sciences. 109 (39): 15679–15684. Bibcode:2012PNAS..10915679J. doi:10.1073/pnas.1208993109. PMC 3465402. PMID 23019353.
- Jacobson; et al. (2015). "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States". Energy and Environmental Science. 8 (7): 2093–2117. doi:10.1039/C5EE01283J.
- Jacobson; et al. (2015). "Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes". Proceedings of the National Academy of Sciences. 112 (49): 15060–15065. Bibcode:2015PNAS..11215060J. doi:10.1073/pnas.1510028112. PMC 4679003. PMID 26598655.
- Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A. (June 27, 2017). "The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims". Proceedings of the National Academy of Sciences. 114 (26): E5021–E5023. Bibcode:2017PNAS..114E5021J. doi:10.1073/pnas.1708069114. PMC 5495290. PMID 28630350.
- Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Mathiesen, Brian V. (August 1, 2018). "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes". Renewable Energy. 123: 236–248. doi:10.1016/j.renene.2018.02.009. S2CID 46784278.
- Jacobson, Mark Z. (2019). "The health and climate impacts of carbon capture and direct air capture". Energy & Environmental Science. 12 (12): 3567–3574. doi:10.1039/C9EE02709B. S2CID 207925484.
- Jacobson, Mark Z. (January 21, 2009). "Review of solutions to global warming, air pollution, and energy security". Energy & Environmental Science. 2 (2): 148–173. Bibcode:2009GeCAS..73R.581J. CiteSeerX 10.1.1.180.4676. doi:10.1039/B809990C.
- Jacobson, Mark Z.; Delucchi, Mark A.; Bazouin, Guillaume; Bauer, Zack A. F.; Heavey, Christa C.; Fisher, Emma; Morris, Sean B.; Piekutowski, Diniana J. Y.; Vencill, Taylor A.; Yeskoo, Tim W. (July 3, 2015). "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States". Energy & Environmental Science. 8 (7): 2093–2117. doi:10.1039/C5EE01283J.
- Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Coughlin, Stephen J.; Hay, Catherine A.; Manogaran, Indu Priya; Shu, Yanbo; von Krauland, Anna-Katharina (December 20, 2019). "Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries". One Earth. 1 (4): 449–463. Bibcode:2019AGUFMPA32A..01J. doi:10.1016/j.oneear.2019.12.003. S2CID 210964561.
- M.Z., Jacobson. "100% Wind, Water, and Solar (WWS) All-Sector Energy Roadmaps for Countries, States, Cities, and Towns". Web.stanford.edu.
Zie ook
Wereldenergievoorziening met wind, water en zon
"Debate: Does the world need nuclear energy?" (TED2010)
Referenties
- º Atmosphere / Energy Program | Civil and Environmental Engineering (in en).
- º Mark Jacobson | Civil and Environmental Engineering.
- ↑ 3,0 3,1 Jacobson, M.Z.. History of, Processes in, and Numerical Techniques in GATOR-GCMOM.
- º "Soot to Blame for Global Warming?".
- º Study Finds Controlling Soot May Be Fastest Method to Reduce Arctic Ice Loss and Global Warming; Second-Leading Cause of Global Warming After.
- º https://www.researchgate.net/publication/38052436_A_Path_to_Sustainable_Energy_by_2030
- º "Meet the scientist who wants to save the world with just renewables", E&E News.
- º Mark Jacobson (in en-US).
- º An Interview with Stanford University Clean Energy Champion Mark Z. Jacobson.
- º Fields, Joe (2018-02-22). Interview with Mark Z. Jacobson (in en-GB).
- º "Text - H.Res.540 - 114th Congress (2015-2016): Expressing the sense of the House of Representatives that the policies of the United States should support a transition to near zero greenhouse gas emissions, 100 percent clean renewable energy, infrastructure modernization, green jobs, full employment, a sustainable economy, fair wages, affordable energy, expanding the middle class, and ending poverty to promote national economic competitiveness and national security and for the purpose of avoiding adverse impacts of a changing climate.", www.congress.gov, 4 December 2015.
- º NY State Senate Bill S5527 (in en) (3 October 2015).
- º "The Climate Science Behind The Green New Deal - A Layperson's Explanation", Forbes. (En)
- ↑ 14,0 14,1 Sustain Europe. web.stanford.edu.
- ↑ 15,0 15,1 (12 July 2016)More than one arrow in the quiver: Why '100% renewables' misses the mark. Proceedings of the National Academy of Sciences 113 (28): E3988. DOI:10.1073/pnas.1603072113.
- ↑ 16,0 16,1 (27 June 2017)Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences 114 (26): 6722–6727. DOI:10.1073/pnas.1610381114.
- ↑ 17,0 17,1 (27 June 2017)The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proceedings of the National Academy of Sciences 114 (26): E5021–E5023. DOI:10.1073/pnas.1708069114.
- º (12 July 2016)Reply to Bistline and Blanford: Letter reaffirms conclusions and highlights flaws in previous research. Proceedings of the National Academy of Sciences 113 (28): E3989–E3990. DOI:10.1073/pnas.1606802113.
- º Leading Stanford climate scientist builds incredible net zero home, complete with Tesla Powerwall (in en-US) (30 October 2017).
- ↑ 20,0 20,1 20,2 20,3 'This changes everything': Experts respond to Held v. Montana climate ruling. Montana Free Press (August 17, 2023).
- ↑ 21,0 21,1 Search Past Award & Honors Recipients (in en).
- º (2014). Bitz, Ginoux, Jacobson, Nizkorodov, and Yang Receive 2013 Atmospheric Sciences Ascent Awards. Eos, Transactions, American Geophysical Union 95 (29). DOI:10.1002/2014EO290012.
- º Zhang, Y. (2008). Online-coupled meteorology and chemistry models: history, current status, and outlook.
- º (1 January 1994)SMVGEAR: A sparse-matrix, vectorized gear code for atmospheric models. Atmospheric Environment 28 (2): 273–284. DOI:10.1016/1352-2310(94)90102-3.
- º (1 September 1995)Computation of global photochemistry with SMVGEAR II. Atmospheric Environment 29 (18): 2541–2546. DOI:10.1016/1352-2310(95)00194-4.
- º (1 February 1998)Improvement of SMVGEAR II on vector and scalar machines through absolute error tolerance control. Atmospheric Environment 32 (4): 791–796. DOI:10.1016/S1352-2310(97)00315-4.
- º (1 April 1994)Modeling coagulation among particles of different composition and size. Atmospheric Environment 28 (7): 1327–1338. DOI:10.1016/1352-2310(94)90280-1.
- º (2002)Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. Journal of Geophysical Research: Atmospheres 107 (D19): AAC 2–1–AAC 2–23. DOI:10.1029/2001JD002044.
- º (1 April 2004)Evolution of nanoparticle size and mixing state near the point of emission. Atmospheric Environment 38 (13): 1839–1850. DOI:10.1016/j.atmosenv.2004.01.014.
- º (1 December 2005)Enhanced Coagulation Due to Evaporation and Its Effect on Nanoparticle Evolution. Environmental Science & Technology 39 (24): 9486–9492. DOI:10.1021/es0500299.
- º (1996)Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. Journal of Geophysical Research: Atmospheres 101 (D4): 9079–9091. DOI:10.1029/96JD00348.
- º (1 September 1999)Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II. Atmospheric Environment 33 (22): 3635–3649. DOI:10.1016/S1352-2310(99)00105-3.
- º (2005)Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of Geophysical Research: Atmospheres 110 (D7). DOI:10.1029/2004JD005220.
- º (1 January 1997)Numerical Techniques to Solve Condensational and Dissolutional Growth Equations When Growth is Coupled to Reversible Reactions. Aerosol Science and Technology 27 (4): 491–498. DOI:10.1080/02786829708965489.
- º (1 June 1996)Development and application of a new air pollution modeling system-part I: Gas-phase simulations. Atmospheric Environment 30 (12): 1939–1963. DOI:10.1016/1352-2310(95)00139-5.
- º (1 January 1997)Development and application of a new air pollution modeling system—II. Aerosol module structure and design. Atmospheric Environment 31 (2): 131–144. DOI:10.1016/1352-2310(96)00202-6.
- º (2001)GATOR-GCMM: A global- through urban-scale air pollution and weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. Journal of Geophysical Research: Atmospheres 106 (D6): 5385–5401. DOI:10.1029/2000JD900560.
- º (2001)GATOR-GCMM: 2. A study of daytime and nighttime ozone layers aloft, ozone in national parks, and weather during the SARMAP field campaign. Journal of Geophysical Research: Atmospheres 106 (D6): 5403–5420. DOI:10.1029/2000JD900559.
- º (2007)Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions. Journal of Geophysical Research: Atmospheres 112 (D24). DOI:10.1029/2007JD008922.
- º (2009)Influence of future anthropogenic emissions on climate, natural emissions, and air quality. Journal of Geophysical Research: Atmospheres 114 (D8). DOI:10.1029/2008JD011476.
- ↑ 41,0 41,1 41,2 (2010)Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. Journal of Geophysical Research: Atmospheres 115 (D14). DOI:10.1029/2009JD013795.
- º (2014)Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. Journal of Geophysical Research: Atmospheres 119 (14): 8980–9002. DOI:10.1002/2014JD021861.
- º David Perlman. Scientists say soot a key factor in warming San Francisco Chronicle, July 28, 2010.
- º (February 2001)Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821): 695–697. DOI:10.1038/35055518.
- º Bond (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118 (11): 5380–5552. DOI:10.1002/jgrd.50171.
- º (2002)Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research: Atmospheres 107 (D19): ACH 16–1–ACH 16–22. DOI:10.1029/2001JD001376.
- º https://www.researchgate.net/publication/38052436_A_Path_to_Sustainable_Energy_by_2030
- º Nancy Folbre (March 28, 2011). Renewing Support for Renewables. New York Times.
- º (1 June 2013)Examining the feasibility of converting New York State's all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy 57: 585–601. DOI:10.1016/j.enpol.2013.02.036.
- º (14 August 2014)A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy 73: 875–889. DOI:10.1016/j.energy.2014.06.099.
- ↑ 51,0 51,1 (1 February 2016)A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State. Renewable Energy 86: 75–88. DOI:10.1016/j.renene.2015.08.003.
- º "Mark Jacobson interview on David Letterman October 9, 2013", AmericanShows. (En)
- º (1 March 2016)PNAS Announces Six 2015 Cozzarelli Prize Recipients. News of the National Academy of Sciences.
- º (1 August 2018)Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renewable Energy 123: 236–248. DOI:10.1016/j.renene.2018.02.009.
- º (1 August 2018)Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renewable Energy 123: 236–248. DOI:10.1016/j.renene.2018.02.009.
- º (1 October 2018)100% clean and renewable Wind, Water, and Sunlight (WWS) all-sector energy roadmaps for 53 towns and cities in North America. Sustainable Cities and Society 42: 22–37. DOI:10.1016/j.scs.2018.06.031.
- º (20 September 2020)Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS). Energies 13 (18): 4934. DOI:10.3390/en13184934.
- º PACE to Host Forum on 100% Renewable Energy Nov. 8 – par-newhaven.org. par-newhaven.org (29 September 2018).
- º Mark Schwarz (February 26, 2014). Stanford scientist unveils 50-state plan to transform U.S. to renewable energy. Stanford Report.
- º (1 March 2016)PNAS Announces Six 2015 Cozzarelli Prize Recipients. News of the National Academy of Sciences.
- º POLbook.
- º Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Coughlin, Stephen J.; Hay, Catherine A.; Manogaran, Indu Priya; Shu, Yanbo; Krauland, Anna-Katharina von (December 20, 2019). "Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries". One Earth. 1 (4): 449–463. Bibcode:2019AGUFMPA32A..01J. doi:10.1016/j.oneear.2019.12.003. S2CID 210964561
- ↑ 63,0 63,1 The Guardian. 2009 The carbon footprint of nuclear war
- º Does Nuclear Energy Really Equate to Nuclear War? January 5, 2011 by Charles Barton
- º Does the world need nuclear energy?
- º Pushker A. Kharecha and James E. Hansen. (May 22, 2013). Response to Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Environ. Sci. Technol. 47 (12): 6718–6719. DOI:10.1021/es402211m.
- º Bruckner et al. 2014: http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter7.pdf Energy Systems. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- ↑ 68,0 68,1 The Economics of Nuclear Reactors: Renaissance or Relapse? Vermont Law School, June 2009, p. 1 and p. 8.
- ↑ 69,0 69,1 (2016)The Economic and Institutional Foundations of the Paris Agreement on Climate Change: The Political Economy of Roadmaps to a Sustainable Electricity Future. DOI:10.2139/ssrn.2722880.
- º THE NET BENEFITS OF LOW AND NO-CARBON ELECTRICITY TECHNOLOGIES. MAY 2014, Charles Frank PDF
- ↑ 71,0 71,1 (1 May 2011)Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies. American Economic Review 101 (3): 238–241. DOI:10.1257/aer.101.3.238.
- º "Sun, wind and drain", 29 July 2014.
- º "The Net Benefits of Low and No-Carbon Electricity Technologies", Brookings, 20 May 2014.
- º (March 2012)Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case. Energy Policy 42: 4–8. DOI:10.1016/j.enpol.2011.11.041.
- º (January 2015)A critical review of global decarbonization scenarios: what do they tell us about feasibility?. WIREs Climate Change 6 (1): 93–112. DOI:10.1002/wcc.324.
- º "Jacobson v. National Academy of Sciences". climatecasechart.com. Retrieved September 1, 2023.
- ↑ 77,0 77,1 77,2 Hiltzik, Michael (February 23, 2018). Column: A Stanford professor drops his ridiculous defamation lawsuit against his scientific critics. LA Times.
- ↑ 78,0 78,1 78,2 Tsai, Alex (March 2, 2018). Stanford professor retracts $10 million libel suit against scientific critic, academic journal. Stanford Daily.
- º Mooney, Chris (February 23, 2018).
- ↑ 80,0 80,1 80,2 Stanford prof appeals order to pay $428K in legal fees after dropping defamation suit. Retraction Watch (September 9, 2022).
- º "Stanford prof who sued critics loses appeal against $500,000 in legal fees". Retraction Watch. February 15, 2024.
Grotendeels vertaald uit https://en.wikipedia.org/wiki/Mark_Z._Jacobson