Wikisage is op 1 na de grootste internet-encyclopedie in het Nederlands. Iedereen kan de hier verzamelde kennis gratis gebruiken, zonder storende advertenties. De Koninklijke Bibliotheek van Nederland heeft Wikisage in 2018 aangemerkt als digitaal erfgoed.
- Wilt u meehelpen om Wikisage te laten groeien? Maak dan een account aan. U bent van harte welkom. Zie: Portaal:Gebruikers.
- Bent u blij met Wikisage, of wilt u juist meer? Dan stellen we een bescheiden donatie om de kosten te bestrijden zeer op prijs. Zie: Portaal:Donaties.
Oppervlakte
De oppervlakte (ook grootte) geeft aan hoe groot een 2-dimensionaal gebied is. Dit kan de oppervlakte zijn van een tweedimensionale vorm, maar ook de oppervlakte van een driedimensionale vorm. Oppervlakte wordt ook wel grootte genoemd, met name bij die van percelen.
De SI-eenheid van oppervlakte is de vierkante meter, m². Deze is afgeleid van de SI-eenheid meter.
Voor niet-SI-eenheden (are, bunder enzovoort), zie: vlaktemaat.
Formules
De oppervlakte kan als volgt worden berekend:
- <math>\iint dA</math> (2D-oppervlak)
- <math>\iiint dA</math> (3D-oppervlak),
waarbij over het oppervlak geïntegreerd wordt.
2D
De oppervlakte van enkele tweedimensionale objecten:
- Oppervlakte van een vierkant: zijde x zijde
- Oppervlakte van een rechthoek: lengte × breedte
- Oppervlakte van een ruit: (hoogte × breedte)/2 (waarin de hoogte en de breedte de lengte van de diagonalen zijn)
- Oppervlakte van een driehoek: ½ × basis × hoogte
- de oppervlakte kan ook met behulp van de formule van Heron worden berekend.
- Oppervlakte van een cirkel: π r2 (waarin r de straal van de cirkel is), of π d2 x 1/4
- Oppervlakte ellips: π x halve lange as x halve korte as
3D
De oppervlakte van enkele driedimensionale objecten:
- Oppervlakte van een kubus: 6 s², waarin s de lengte is van een zijde van de kubus.
- Oppervlakte van een balk: 2 ((l × w) + (l × h) + (w × h)), waarin l, w en h de lengte, breedte en hoogte zijn van de balk.
- Oppervlakte van een bol: 4 π r² waarin r de straal van de bol is.
- Oppervlakte van een cilinder: 2 π r (h + r), waarin r de straal van de cirkelvormige basis is, en h de hoogte van de cilinder.
- Oppervlakte van een kegel: π r (r + √(r² + h²)), waarin r de straal van de cirkelvormige basis is, en h de hoogte van de kegel.
Wiskundige afleiding
Gebruik makend van <math>A=\iint dA</math>:
- cirkel: <math>\int_{-y}^y \int_{-\sqrt{R^2-y^2}}^{\sqrt{R^2-y^2}}dydx=\pi R^2</math>. Uiteraard is het eleganter de cirkel polair te beschrijven, en in een polair assenstelsel te integreren!
De maattheorie levert een exacte en algemene definitie voor het begrip oppervlakte aan de hand van een maat. Voor vlakke tweedimensionale figuren hanteert men de Lebesgue-maat op <math>\mathbb{R}^2</math>. Voor gekromde oppervlakken bestaat enerzijds het volumebegrip uit de differentiaalmeetkunde, anderzijds de Haarmaat uit de theorie der Lie-groepen.